Extremal networks in $\lambda$-geometry, where $\lambda=3,4,6$
Sbornik. Mathematics, Tome 208 (2017) no. 4, pp. 479-509
Voir la notice de l'article provenant de la source Math-Net.Ru
The first author obtained a geometric criterion for a network to be extremal in $\lambda$-geometry for $\lambda\ne2,3,4,6$. The case $\lambda=2$ was examined by Ivanov and Tuzhilin. In this work, we suggest an extremality criterion for the remaining three cases $\lambda=3,4,6$.
Bibliography: 21 titles.
Keywords:
Steiner tree problem, normed plane, network, locally minimal network, extremal network.
@article{SM_2017_208_4_a1,
author = {D. P. Ilyutko and I. M. Nikonov},
title = {Extremal networks in $\lambda$-geometry, where $\lambda=3,4,6$},
journal = {Sbornik. Mathematics},
pages = {479--509},
publisher = {mathdoc},
volume = {208},
number = {4},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_4_a1/}
}
D. P. Ilyutko; I. M. Nikonov. Extremal networks in $\lambda$-geometry, where $\lambda=3,4,6$. Sbornik. Mathematics, Tome 208 (2017) no. 4, pp. 479-509. http://geodesic.mathdoc.fr/item/SM_2017_208_4_a1/