Extremal networks in $\lambda$-geometry, where $\lambda=3,4,6$
Sbornik. Mathematics, Tome 208 (2017) no. 4, pp. 479-509

Voir la notice de l'article provenant de la source Math-Net.Ru

The first author obtained a geometric criterion for a network to be extremal in $\lambda$-geometry for $\lambda\ne2,3,4,6$. The case $\lambda=2$ was examined by Ivanov and Tuzhilin. In this work, we suggest an extremality criterion for the remaining three cases $\lambda=3,4,6$. Bibliography: 21 titles.
Keywords: Steiner tree problem, normed plane, network, locally minimal network, extremal network.
@article{SM_2017_208_4_a1,
     author = {D. P. Ilyutko and I. M. Nikonov},
     title = {Extremal networks in $\lambda$-geometry, where $\lambda=3,4,6$},
     journal = {Sbornik. Mathematics},
     pages = {479--509},
     publisher = {mathdoc},
     volume = {208},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_4_a1/}
}
TY  - JOUR
AU  - D. P. Ilyutko
AU  - I. M. Nikonov
TI  - Extremal networks in $\lambda$-geometry, where $\lambda=3,4,6$
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 479
EP  - 509
VL  - 208
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_4_a1/
LA  - en
ID  - SM_2017_208_4_a1
ER  - 
%0 Journal Article
%A D. P. Ilyutko
%A I. M. Nikonov
%T Extremal networks in $\lambda$-geometry, where $\lambda=3,4,6$
%J Sbornik. Mathematics
%D 2017
%P 479-509
%V 208
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2017_208_4_a1/
%G en
%F SM_2017_208_4_a1
D. P. Ilyutko; I. M. Nikonov. Extremal networks in $\lambda$-geometry, where $\lambda=3,4,6$. Sbornik. Mathematics, Tome 208 (2017) no. 4, pp. 479-509. http://geodesic.mathdoc.fr/item/SM_2017_208_4_a1/