Extremal networks in $\lambda$-geometry, where $\lambda=3,4,6$
Sbornik. Mathematics, Tome 208 (2017) no. 4, pp. 479-509 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The first author obtained a geometric criterion for a network to be extremal in $\lambda$-geometry for $\lambda\ne2,3,4,6$. The case $\lambda=2$ was examined by Ivanov and Tuzhilin. In this work, we suggest an extremality criterion for the remaining three cases $\lambda=3,4,6$. Bibliography: 21 titles.
Keywords: Steiner tree problem, normed plane, network, locally minimal network, extremal network.
@article{SM_2017_208_4_a1,
     author = {D. P. Ilyutko and I. M. Nikonov},
     title = {Extremal networks in $\lambda$-geometry, where $\lambda=3,4,6$},
     journal = {Sbornik. Mathematics},
     pages = {479--509},
     year = {2017},
     volume = {208},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_4_a1/}
}
TY  - JOUR
AU  - D. P. Ilyutko
AU  - I. M. Nikonov
TI  - Extremal networks in $\lambda$-geometry, where $\lambda=3,4,6$
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 479
EP  - 509
VL  - 208
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_4_a1/
LA  - en
ID  - SM_2017_208_4_a1
ER  - 
%0 Journal Article
%A D. P. Ilyutko
%A I. M. Nikonov
%T Extremal networks in $\lambda$-geometry, where $\lambda=3,4,6$
%J Sbornik. Mathematics
%D 2017
%P 479-509
%V 208
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2017_208_4_a1/
%G en
%F SM_2017_208_4_a1
D. P. Ilyutko; I. M. Nikonov. Extremal networks in $\lambda$-geometry, where $\lambda=3,4,6$. Sbornik. Mathematics, Tome 208 (2017) no. 4, pp. 479-509. http://geodesic.mathdoc.fr/item/SM_2017_208_4_a1/

[1] R. Courant, H. Robbins, What is mathematics? An elementary approach to ideas and methods, 2nd ed., Oxford Univ. Press, New York, 1996, xxv+566 pp. | MR | Zbl | Zbl

[2] P. de Fermat, “Abhandlungen über Maxima und Minima”, Oswalds Klassiker der Exakten Wissenschaften, 238, Akademische Verlagsgesellschaft, Leipzig, 1934, 50 pp. | Zbl

[3] D. Z. Du, F. K. Hwang, J. F. Weng, “Steiner minimal trees for regular polygons”, Discrete Comput. Geom., 2:1 (1987), 65–84 | DOI | MR | Zbl

[4] V. Jarnik, M. Kössler, “O minimalnich grafeth obeahujiicich $n$ danijch bodu”, Časopis Pěst. Mat. Fys., 63 (1934), 223–235 | Zbl

[5] W. D. Smith, “How to find Steiner minimal trees in Euclidean $d$-space”, Algorithmica, 7:2-3 (1992), 137–177 | DOI | MR | Zbl

[6] M. Hanan, “On Steiner's problem with rectilinear distance”, SIAM J. Appl. Math., 14:2 (1966), 255–265 | DOI | MR | Zbl

[7] F. K. Hwang, “On Steiner minimal trees with rectilinear distance”, SIAM J. Appl. Math., 30:1 (1976), 104–114 | DOI | MR | Zbl

[8] M. R. Garey, D. S. Johnson, “The rectilinear Steiner tree problem is $NP$-complete”, SIAM J. Appl. Math., 32:4 (1977), 826–834 | DOI | MR | Zbl

[9] G. A. Karpunin, “An analogue of Morse theory for planar linear networks and the generalized Steiner problem”, Sb. Math., 191:2 (2000), 209–233 | DOI | DOI | MR | Zbl

[10] G. A. Karpunin, Teoriya Morsa minimalnykh setei, Diss. ... kand. fiz.-matem. nauk, MGU, M., 2001, 179 pp.

[11] A. O. Ivanov, A. A. Tuzhilin, Teoriya ekstremalnykh setei, In-t kompyuternykh issledovanii, M.–Izhevsk, 2003, 424 pp.

[12] M. Sarrafzadeh, C. K. Wong, “Hierarchical Steiner tree construction in uniform orientations”, IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 11:9 (1992), 1095–1103 | DOI

[13] D. T. Lee, C. F. Shen, “The Steiner minimal tree problem in the $\lambda$-geometry plane”, Algorithms and computation (Osaka, 1996), Lecture Notes in Comput. Sci., 1178, Springer, Berlin, 1996, 247–255 | DOI | MR | Zbl

[14] K. J. Swanepoel, “The local Steiner problem in normed planes”, Networks, 36:2 (2000), 104–113 | 3.0.CO;2-K class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[15] D. P. Il'yutko, “Locally minimal trees in $n$-normed spaces”, Math. Notes, 74:5 (2003), 619–629 | DOI | DOI | MR | Zbl

[16] D. P. Il'yutko, “Geometry of extremal nets on $\lambda$-normed planes”, Mosc. Univ. Math. Bull., 60:4 (2005), 39–41 | MR | Zbl

[17] D. P. Ilyutko, Geometriya lokalno minimalnykh i ekstremalnykh setei v prostranstvakh s normami, Diss. ... kand. fiz.-matem. nauk, MGU, M., 2005, 139 pp.

[18] D. P. Il'yutko, “Branching extremals of the functional of $\lambda$-normed length”, Sb. Math., 197:5 (2006), 705–726 | DOI | DOI | MR | Zbl

[19] A. O. Ivanov, A. A. Tuzhilin, Branching solutions to one-dimensional variational problems, World Scientific Publishing Co., Inc., River Edge, NJ, 2001, xxii+342 pp. | DOI | MR | Zbl

[20] M. Brazil, D. A. Thomas, J. F. Weng, “Locally minimal uniformly oriented shortest networks”, Discrete Appl. Math., 154:18 (2006), 2545–2564 | DOI | MR | Zbl

[21] M. Brazil, D. A. Thomas, J. F. Weng, M. Zachariasen, Canonical forms and algorithms for Steiner trees in uniform orientation metrics, Technical Report 02/22, DIKU, Department of Computer Science, Univ. of Copenhagen, København, 2002, 26 pp.