Inequalities for exponential sums
Sbornik. Mathematics, Tome 208 (2017) no. 3, pp. 433-464
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the classes
\begin{gather*}
{\mathscr E}_n:= \biggl\{f\colon f(t)=\sum_{j=1}^n{a_j e^{\lambda_jt}},
\ a_j, \lambda_j\in {\mathbb C} \biggr\},
\\
{\mathscr E}_n^+:= \biggl\{f\colon f(t)=\sum_{j=1}^n{a_j e^{\lambda_jt}}, \ a_j, \lambda_j\in {\mathbb C},
\ \operatorname{Re}(\lambda_j) \geqslant 0 \biggr\},
\\
{\mathscr E}_n^-:= \biggl\{f\colon f(t)=\sum_{j=1}^n{a_j e^{\lambda_jt}},
\ a_j, \lambda_j\in {\mathbb C},
\ \operatorname{Re}(\lambda_j)\leqslant 0 \biggr\},
\end{gather*}
and
$$
{\mathscr T}_n:= \biggl\{f\colon f(t)=\sum_{j=1}^n{a_j e^{i\lambda_jt}},
\ a_j\in {\mathbb C},
\ \lambda_1\lambda_2\dots\lambda_n \biggr\}.
$$
A highlight of this paper is the asymptotically sharp inequality
$$
|f(0)|\leqslant (1+\varepsilon_n)3n\|f(t)e^{-9nt/2}\|_{L_2[0,1]},
\qquad f\in {\mathscr T}_n ,
$$
where $\varepsilon_n$ converges to $0$ rapidly as $n$ tends to $\infty$. The inequality
$$
\sup_{0 \not \equiv f\in {\mathscr T}_n}{ \frac{|f(0)|}{\|f\|_{L_2{[0,1]}}}} \geqslant n
$$
is also established. Our results improve an old result due to Halász and a recent result due to Kós. We prove several other related order-sharp results in this paper.
Bibliography: 33 titles.
Keywords:
exponential sums, Nikol'skii-, Bernstein- and Markov-type inequalities, infinite-finite range inequalities.
@article{SM_2017_208_3_a7,
author = {T. Erd\'elyi},
title = {Inequalities for exponential sums},
journal = {Sbornik. Mathematics},
pages = {433--464},
publisher = {mathdoc},
volume = {208},
number = {3},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_3_a7/}
}
T. Erdélyi. Inequalities for exponential sums. Sbornik. Mathematics, Tome 208 (2017) no. 3, pp. 433-464. http://geodesic.mathdoc.fr/item/SM_2017_208_3_a7/