Inequalities for exponential sums
Sbornik. Mathematics, Tome 208 (2017) no. 3, pp. 433-464

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the classes \begin{gather*} {\mathscr E}_n:= \biggl\{f\colon f(t)=\sum_{j=1}^n{a_j e^{\lambda_jt}}, \ a_j, \lambda_j\in {\mathbb C} \biggr\}, \\ {\mathscr E}_n^+:= \biggl\{f\colon f(t)=\sum_{j=1}^n{a_j e^{\lambda_jt}}, \ a_j, \lambda_j\in {\mathbb C}, \ \operatorname{Re}(\lambda_j) \geqslant 0 \biggr\}, \\ {\mathscr E}_n^-:= \biggl\{f\colon f(t)=\sum_{j=1}^n{a_j e^{\lambda_jt}}, \ a_j, \lambda_j\in {\mathbb C}, \ \operatorname{Re}(\lambda_j)\leqslant 0 \biggr\}, \end{gather*} and $$ {\mathscr T}_n:= \biggl\{f\colon f(t)=\sum_{j=1}^n{a_j e^{i\lambda_jt}}, \ a_j\in {\mathbb C}, \ \lambda_1\lambda_2\dots\lambda_n \biggr\}. $$ A highlight of this paper is the asymptotically sharp inequality $$ |f(0)|\leqslant (1+\varepsilon_n)3n\|f(t)e^{-9nt/2}\|_{L_2[0,1]}, \qquad f\in {\mathscr T}_n , $$ where $\varepsilon_n$ converges to $0$ rapidly as $n$ tends to $\infty$. The inequality $$ \sup_{0 \not \equiv f\in {\mathscr T}_n}{ \frac{|f(0)|}{\|f\|_{L_2{[0,1]}}}} \geqslant n $$ is also established. Our results improve an old result due to Halász and a recent result due to Kós. We prove several other related order-sharp results in this paper. Bibliography: 33 titles.
Keywords: exponential sums, Nikol'skii-, Bernstein- and Markov-type inequalities, infinite-finite range inequalities.
@article{SM_2017_208_3_a7,
     author = {T. Erd\'elyi},
     title = {Inequalities for exponential sums},
     journal = {Sbornik. Mathematics},
     pages = {433--464},
     publisher = {mathdoc},
     volume = {208},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_3_a7/}
}
TY  - JOUR
AU  - T. Erdélyi
TI  - Inequalities for exponential sums
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 433
EP  - 464
VL  - 208
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_3_a7/
LA  - en
ID  - SM_2017_208_3_a7
ER  - 
%0 Journal Article
%A T. Erdélyi
%T Inequalities for exponential sums
%J Sbornik. Mathematics
%D 2017
%P 433-464
%V 208
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2017_208_3_a7/
%G en
%F SM_2017_208_3_a7
T. Erdélyi. Inequalities for exponential sums. Sbornik. Mathematics, Tome 208 (2017) no. 3, pp. 433-464. http://geodesic.mathdoc.fr/item/SM_2017_208_3_a7/