Mots-clés : Jordan arc
@article{SM_2017_208_3_a6,
author = {V. Totik},
title = {Asymptotic {Markov} inequality on {Jordan} arcs},
journal = {Sbornik. Mathematics},
pages = {413--432},
year = {2017},
volume = {208},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_3_a6/}
}
V. Totik. Asymptotic Markov inequality on Jordan arcs. Sbornik. Mathematics, Tome 208 (2017) no. 3, pp. 413-432. http://geodesic.mathdoc.fr/item/SM_2017_208_3_a6/
[1] D. H. Armitage, S. J. Gardiner, Classical potential theory, Springer Monogr. Math., Springer-Verlag London, Ltd., London, 2001, xvi+333 pp. | DOI | MR | Zbl
[2] S. N. Bernshtein, “O nailuchshem priblizhenii nepreryvnykh funktsii posredstvom mnogochlenov dannoi stepeni (1912)”, Sobranie sochinenii, v. 1, Izd-vo AN SSSR, M., 1952, 11–104 | MR | Zbl
[3] P. Borwein, T. Erdélyi, Polynomials and polynomial inequalities, Grad. Texts in Math., 161, Springer Verlag, New York, 1995, x+480 pp. | DOI | MR | Zbl
[4] R. A. DeVore, G. G. Lorentz, Constructive approximation, Grundlehren Math. Wiss., 303, Springer-Verlag, Berlin, 1993, x+449 pp. | MR | Zbl
[5] A. Eremenko, “A Markov-type inequality for arbitrary plane continua”, Proc. Amer. Math. Soc., 135:5 (2007), 1505–1510 | DOI | MR | Zbl
[6] C. F. Faà di Bruno, “Note sur une nouvelle formule de calcul différentiel”, Quarterly J. Pure Appl. Math., 1 (1857), 359–360
[7] S. I. Kalmykov, B. Nagy, “Polynomial and rational inequalities on analytic Jordan arcs and domains”, J. Math. Anal. Appl., 430:2 (2015), 874–894 | DOI | MR | Zbl
[8] A. Markov', “Ob' odnom voprosѣ D. I. Mendelѣeva”, Zapiski Imperatorskoi Akademii nauk', 62, Tip. Imp. AN, SPb., 1890, 1–24 | Zbl
[9] W. Markoff, “Über Polynome, die in einem gegebenen Intervalle möglichst wenig von Null abweichen”, Math. Ann., 77:2 (1916), 213–258 | DOI | MR | Zbl | Zbl
[10] G. V. Milovanović, D. S. Mitrinović, Th. M. Rassias, Topics in polynomials: extremal problems, inequalities, zeros, World Scientific Publishing Co., Inc., River Edge, NJ, 1994, xiv+821 pp. | DOI | MR | Zbl
[11] B. Nagy, V. Totik, “Bernstein's inequality for algebraic polynomials on circular arcs”, Constr. Approx., 37:2 (2013), 223–232 | DOI | MR | Zbl
[12] B. Nagy, V. Totik, “Riesz-type inequalities on general sets”, J. Math. Anal. Appl., 416:1 (2014), 344–351 | DOI | MR | Zbl
[13] Ch. Pommerenke, “On the derivative of a polynomial”, Michigan Math. J., 6:4 (1959), 373–375 | DOI | MR | Zbl
[14] Ch. Pommerenke, Boundary behaviour of conformal mappings, Grundlehren Math. Wiss., 299, Springer-Verlag, Berlin, 1992, x+300 pp. | DOI | MR | Zbl
[15] T. Ransford, Potential theory in the complex plane, London Math. Soc. Stud. Texts, 28, Cambridge Univ. Press, Cambridge, 1995, x+232 pp. | DOI | MR | Zbl
[16] J. Riordan, An introduction to combinatorial analysis, Wiley Publications in Mathematical Statistics, John Wiley Sons, Inc., New York; Chapman Hall, Ltd., London, 1958, xi+244 pp. | MR | Zbl | Zbl
[17] V. Totik, “Christoffel functions on curves and domains”, Trans. Amer. Math. Soc., 362:4 (2010), 2053–2087 | DOI | MR | Zbl
[18] M. Tsuji, Potential theory in modern function theory, 1959, Maruzen Co., Ltd., Tokyo, 590 pp. | MR | Zbl
[19] V. S. Videnskii, “Extremal estimates for the derivative of a trigonometric polynomial on an interval shorter than its period”, Soviet Math. Dokl., 1 (1960), 5–8 | MR | Zbl
[20] J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, Amer. Math. Soc. Colloq. Publ., XX, 3rd ed., Amer. Math. Soc., Providence, RI, 1960, x+398 pp. | MR | MR | Zbl | Zbl
[21] S. E. Warschawski, “On the higher derivatives at the boundary in conformal mapping”, Trans. Amer. Math. Soc., 38:2 (1935), 310–340 | DOI | MR | Zbl