Asymptotic Markov inequality on Jordan arcs
Sbornik. Mathematics, Tome 208 (2017) no. 3, pp. 413-432

Voir la notice de l'article provenant de la source Math-Net.Ru

Markov's inequality for the derivative of algebraic polynomials is considered on $C^2$-smooth Jordan arcs. The asymptotically best estimate is given for the $k$th derivative for all $k=1,2,\dots$ . The best constant is related to the behaviour around the endpoints of the arc of the normal derivative of the Green's function of the complementary domain. The result is deduced from the asymptotically sharp Bernstein inequality for the $k$th derivative at inner points of a Jordan arc, which is derived from a recent result of Kalmykov and Nagy on the Bernstein inequality on analytic arcs. In the course of the proof we shall also need to reduce the analyticity condition in this last result to $C^2$-smoothness. Bibliography: 21 titles.
Keywords: Markov inequality, normal derivative of Green's function.
Mots-clés : Jordan arc
@article{SM_2017_208_3_a6,
     author = {V. Totik},
     title = {Asymptotic {Markov} inequality on {Jordan} arcs},
     journal = {Sbornik. Mathematics},
     pages = {413--432},
     publisher = {mathdoc},
     volume = {208},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_3_a6/}
}
TY  - JOUR
AU  - V. Totik
TI  - Asymptotic Markov inequality on Jordan arcs
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 413
EP  - 432
VL  - 208
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_3_a6/
LA  - en
ID  - SM_2017_208_3_a6
ER  - 
%0 Journal Article
%A V. Totik
%T Asymptotic Markov inequality on Jordan arcs
%J Sbornik. Mathematics
%D 2017
%P 413-432
%V 208
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2017_208_3_a6/
%G en
%F SM_2017_208_3_a6
V. Totik. Asymptotic Markov inequality on Jordan arcs. Sbornik. Mathematics, Tome 208 (2017) no. 3, pp. 413-432. http://geodesic.mathdoc.fr/item/SM_2017_208_3_a6/