Asymptotic Markov inequality on Jordan arcs
Sbornik. Mathematics, Tome 208 (2017) no. 3, pp. 413-432 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Markov's inequality for the derivative of algebraic polynomials is considered on $C^2$-smooth Jordan arcs. The asymptotically best estimate is given for the $k$th derivative for all $k=1,2,\dots$ . The best constant is related to the behaviour around the endpoints of the arc of the normal derivative of the Green's function of the complementary domain. The result is deduced from the asymptotically sharp Bernstein inequality for the $k$th derivative at inner points of a Jordan arc, which is derived from a recent result of Kalmykov and Nagy on the Bernstein inequality on analytic arcs. In the course of the proof we shall also need to reduce the analyticity condition in this last result to $C^2$-smoothness. Bibliography: 21 titles.
Keywords: Markov inequality, normal derivative of Green's function.
Mots-clés : Jordan arc
@article{SM_2017_208_3_a6,
     author = {V. Totik},
     title = {Asymptotic {Markov} inequality on {Jordan} arcs},
     journal = {Sbornik. Mathematics},
     pages = {413--432},
     year = {2017},
     volume = {208},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_3_a6/}
}
TY  - JOUR
AU  - V. Totik
TI  - Asymptotic Markov inequality on Jordan arcs
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 413
EP  - 432
VL  - 208
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_3_a6/
LA  - en
ID  - SM_2017_208_3_a6
ER  - 
%0 Journal Article
%A V. Totik
%T Asymptotic Markov inequality on Jordan arcs
%J Sbornik. Mathematics
%D 2017
%P 413-432
%V 208
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2017_208_3_a6/
%G en
%F SM_2017_208_3_a6
V. Totik. Asymptotic Markov inequality on Jordan arcs. Sbornik. Mathematics, Tome 208 (2017) no. 3, pp. 413-432. http://geodesic.mathdoc.fr/item/SM_2017_208_3_a6/

[1] D. H. Armitage, S. J. Gardiner, Classical potential theory, Springer Monogr. Math., Springer-Verlag London, Ltd., London, 2001, xvi+333 pp. | DOI | MR | Zbl

[2] S. N. Bernshtein, “O nailuchshem priblizhenii nepreryvnykh funktsii posredstvom mnogochlenov dannoi stepeni (1912)”, Sobranie sochinenii, v. 1, Izd-vo AN SSSR, M., 1952, 11–104 | MR | Zbl

[3] P. Borwein, T. Erdélyi, Polynomials and polynomial inequalities, Grad. Texts in Math., 161, Springer Verlag, New York, 1995, x+480 pp. | DOI | MR | Zbl

[4] R. A. DeVore, G. G. Lorentz, Constructive approximation, Grundlehren Math. Wiss., 303, Springer-Verlag, Berlin, 1993, x+449 pp. | MR | Zbl

[5] A. Eremenko, “A Markov-type inequality for arbitrary plane continua”, Proc. Amer. Math. Soc., 135:5 (2007), 1505–1510 | DOI | MR | Zbl

[6] C. F. Faà di Bruno, “Note sur une nouvelle formule de calcul différentiel”, Quarterly J. Pure Appl. Math., 1 (1857), 359–360

[7] S. I. Kalmykov, B. Nagy, “Polynomial and rational inequalities on analytic Jordan arcs and domains”, J. Math. Anal. Appl., 430:2 (2015), 874–894 | DOI | MR | Zbl

[8] A. Markov', “Ob' odnom voprosѣ D. I. Mendelѣeva”, Zapiski Imperatorskoi Akademii nauk', 62, Tip. Imp. AN, SPb., 1890, 1–24 | Zbl

[9] W. Markoff, “Über Polynome, die in einem gegebenen Intervalle möglichst wenig von Null abweichen”, Math. Ann., 77:2 (1916), 213–258 | DOI | MR | Zbl | Zbl

[10] G. V. Milovanović, D. S. Mitrinović, Th. M. Rassias, Topics in polynomials: extremal problems, inequalities, zeros, World Scientific Publishing Co., Inc., River Edge, NJ, 1994, xiv+821 pp. | DOI | MR | Zbl

[11] B. Nagy, V. Totik, “Bernstein's inequality for algebraic polynomials on circular arcs”, Constr. Approx., 37:2 (2013), 223–232 | DOI | MR | Zbl

[12] B. Nagy, V. Totik, “Riesz-type inequalities on general sets”, J. Math. Anal. Appl., 416:1 (2014), 344–351 | DOI | MR | Zbl

[13] Ch. Pommerenke, “On the derivative of a polynomial”, Michigan Math. J., 6:4 (1959), 373–375 | DOI | MR | Zbl

[14] Ch. Pommerenke, Boundary behaviour of conformal mappings, Grundlehren Math. Wiss., 299, Springer-Verlag, Berlin, 1992, x+300 pp. | DOI | MR | Zbl

[15] T. Ransford, Potential theory in the complex plane, London Math. Soc. Stud. Texts, 28, Cambridge Univ. Press, Cambridge, 1995, x+232 pp. | DOI | MR | Zbl

[16] J. Riordan, An introduction to combinatorial analysis, Wiley Publications in Mathematical Statistics, John Wiley Sons, Inc., New York; Chapman Hall, Ltd., London, 1958, xi+244 pp. | MR | Zbl | Zbl

[17] V. Totik, “Christoffel functions on curves and domains”, Trans. Amer. Math. Soc., 362:4 (2010), 2053–2087 | DOI | MR | Zbl

[18] M. Tsuji, Potential theory in modern function theory, 1959, Maruzen Co., Ltd., Tokyo, 590 pp. | MR | Zbl

[19] V. S. Videnskii, “Extremal estimates for the derivative of a trigonometric polynomial on an interval shorter than its period”, Soviet Math. Dokl., 1 (1960), 5–8 | MR | Zbl

[20] J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, Amer. Math. Soc. Colloq. Publ., XX, 3rd ed., Amer. Math. Soc., Providence, RI, 1960, x+398 pp. | MR | MR | Zbl | Zbl

[21] S. E. Warschawski, “On the higher derivatives at the boundary in conformal mapping”, Trans. Amer. Math. Soc., 38:2 (1935), 310–340 | DOI | MR | Zbl