Mots-clés : Bloch space
@article{SM_2017_208_3_a5,
author = {O. V. Ivrii and I. R. Kayumov},
title = {Makarov's principle for the {Bloch} unit ball},
journal = {Sbornik. Mathematics},
pages = {399--412},
year = {2017},
volume = {208},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_3_a5/}
}
O. V. Ivrii; I. R. Kayumov. Makarov's principle for the Bloch unit ball. Sbornik. Mathematics, Tome 208 (2017) no. 3, pp. 399-412. http://geodesic.mathdoc.fr/item/SM_2017_208_3_a5/
[1] K. Astala, O. Ivrii, A. Perälä, I. Prause, “Asymptotic variance of the Beurling transform”, Geom. Funct. Anal., 25:6 (2015), 1647–1687 | DOI | MR | Zbl
[2] F. G. Avhadiev, I. R. Kayumov, “Estimates for Bloch functions and their generalization”, Complex Variables Theory Appl., 29:3 (1996), 193–201 | MR | Zbl
[3] R. Bañuelos, “Brownian motion and area functions”, Indiana Univ. Math. J., 35:3 (1986), 643–668 | DOI | MR | Zbl
[4] R. Bañuelos, C. N. Moore, “Mean growth of Bloch functions and Makarov's law of the iterated logarithm”, Proc. Amer. Math. Soc., 112:3 (1991), 851–854 | DOI | MR | Zbl
[5] M. Bonk, Extremalprobleme bei Bloch-funktionen, PhD Thesis, TU Braunschweig, 1988, 54 pp. | Zbl
[6] F. P. Gardiner, N. Lakic, Quasiconformal Teichmüller theory, Math. Surveys Monogr., 76, Amer. Math. Soc., Providence, RI, 2000, xx+372 pp. | MR | Zbl
[7] J. B. Garnett, D. E. Marshall, Harmonic measure, New Math. Monogr., 2, Cambridge Univ. Press, Cambridge, 2005, xvi+571 pp. | DOI | MR | Zbl
[8] H. Hedenmalm, Bloch functions, asymptotic variance and geometric zero packing, arXiv: 1602.03358
[9] H. Hedenmalm, I. Kayumov, “On the Makarov law of the iterated logarithm”, Proc. Amer. Math. Soc., 135:7 (2007), 2235–2248 | DOI | MR | Zbl
[10] O. Ivrii, Quasicircles of dimension $1+k^2$ do not exist, arXiv: 1511.07240
[11] O. Ivrii, On Makarov's principle in conformal mapping, arXiv: 1604.05619
[12] I. R. Kayumov, “The law of the iterated logarithm for locally univalent functions”, Ann. Acad. Sci. Fenn. Math., 27:2 (2002), 357–364 | MR | Zbl
[13] Nhat Le Thanh Hoang, M. Zinsmeister, “On Minkowski dimension of Jordan curves”, Ann. Acad. Sci. Fenn. Math., 39:2 (2014), 787–810 | DOI | MR | Zbl
[14] T. Lyons, “A synthetic proof of Makarov's law of the iterated logarithm”, Bull. London Math. Soc., 22:2 (1990), 159–162 | DOI | MR | Zbl
[15] N. G. Makarov, “On the distortion of boundary sets under conformal mappings”, Proc. London Math. Soc. (3), 51:2 (1985), 369–384 | DOI | MR | Zbl
[16] N. G. Makarov, “Conformal mapping and Hausdorff measures”, Ark. Mat., 25:1 (1987), 41–89 | DOI | MR | Zbl
[17] N. G. Makarov, “Probability methods in the theory of conformal mappings”, Leningrad Math. J., 1:1 (1990), 1–56 | MR | Zbl
[18] C. T. McMullen, “Thermodynamics, dimension and the Weil–Petersson metric”, Invent. Math., 173:2 (2008), 365–425 | DOI | MR | Zbl
[19] A. Perälä, “On the optimal constant for the Bergman projection onto the Bloch space”, Ann. Acad. Sci. Fenn. Math., 37:1 (2012), 245–249 | DOI | MR | Zbl
[20] Ch. Pommerenke, “The growth of the derivative of a univalent function”, The Bieberbach conjecture (West Lafayette, IN, 1985), Math. Surveys Monogr., 21, Amer. Math. Soc., Providence, RI, 1986, 143–152 | MR | Zbl
[21] Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren Math. Wiss., 299, Springer-Verlag, Berlin, 1992, x+300 pp. | DOI | MR | Zbl
[22] F. Przytycki, “On the law of iterated logarithm for Bloch functions”, Studia Math., 93:2 (1989), 145–154 | MR | Zbl
[23] Kehe Zhu, Spaces of holomorphic functions in the unit ball, Grad. Texts in Math., 226, Springer-Verlag, New York, 2005, x+271 pp. | DOI | MR | Zbl