Makarov's principle for the Bloch unit ball
Sbornik. Mathematics, Tome 208 (2017) no. 3, pp. 399-412 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Makarov's principle relates three characteristics of Bloch functions that resemble the variance of a Gaussian: asymptotic variance, the constant in Makarov's law of iterated logarithm and the second derivative of the integral means spectrum at the origin. While these quantities need not be equal in general, we show that the universal bounds agree if we take the supremum over the Bloch unit ball. For the supremum (of either of these quantities), we give the estimate $\Sigma^2_{\mathscr B} < \min(0.9, \Sigma^2)$, where $\Sigma^2$ is the analogous quantity associated to the unit ball in the $L^\infty$ norm on the Bloch space. This improves on the upper bound in Pommerenke's estimate $0.685^2 < \Sigma^2_{\mathscr B} \le 1$. Bibliography: 23 titles.
Keywords: law of the iterated logarithm, integral means spectrum, Bergman projection.
Mots-clés : Bloch space
@article{SM_2017_208_3_a5,
     author = {O. V. Ivrii and I. R. Kayumov},
     title = {Makarov's principle for the {Bloch} unit ball},
     journal = {Sbornik. Mathematics},
     pages = {399--412},
     year = {2017},
     volume = {208},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_3_a5/}
}
TY  - JOUR
AU  - O. V. Ivrii
AU  - I. R. Kayumov
TI  - Makarov's principle for the Bloch unit ball
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 399
EP  - 412
VL  - 208
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_3_a5/
LA  - en
ID  - SM_2017_208_3_a5
ER  - 
%0 Journal Article
%A O. V. Ivrii
%A I. R. Kayumov
%T Makarov's principle for the Bloch unit ball
%J Sbornik. Mathematics
%D 2017
%P 399-412
%V 208
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2017_208_3_a5/
%G en
%F SM_2017_208_3_a5
O. V. Ivrii; I. R. Kayumov. Makarov's principle for the Bloch unit ball. Sbornik. Mathematics, Tome 208 (2017) no. 3, pp. 399-412. http://geodesic.mathdoc.fr/item/SM_2017_208_3_a5/

[1] K. Astala, O. Ivrii, A. Perälä, I. Prause, “Asymptotic variance of the Beurling transform”, Geom. Funct. Anal., 25:6 (2015), 1647–1687 | DOI | MR | Zbl

[2] F. G. Avhadiev, I. R. Kayumov, “Estimates for Bloch functions and their generalization”, Complex Variables Theory Appl., 29:3 (1996), 193–201 | MR | Zbl

[3] R. Bañuelos, “Brownian motion and area functions”, Indiana Univ. Math. J., 35:3 (1986), 643–668 | DOI | MR | Zbl

[4] R. Bañuelos, C. N. Moore, “Mean growth of Bloch functions and Makarov's law of the iterated logarithm”, Proc. Amer. Math. Soc., 112:3 (1991), 851–854 | DOI | MR | Zbl

[5] M. Bonk, Extremalprobleme bei Bloch-funktionen, PhD Thesis, TU Braunschweig, 1988, 54 pp. | Zbl

[6] F. P. Gardiner, N. Lakic, Quasiconformal Teichmüller theory, Math. Surveys Monogr., 76, Amer. Math. Soc., Providence, RI, 2000, xx+372 pp. | MR | Zbl

[7] J. B. Garnett, D. E. Marshall, Harmonic measure, New Math. Monogr., 2, Cambridge Univ. Press, Cambridge, 2005, xvi+571 pp. | DOI | MR | Zbl

[8] H. Hedenmalm, Bloch functions, asymptotic variance and geometric zero packing, arXiv: 1602.03358

[9] H. Hedenmalm, I. Kayumov, “On the Makarov law of the iterated logarithm”, Proc. Amer. Math. Soc., 135:7 (2007), 2235–2248 | DOI | MR | Zbl

[10] O. Ivrii, Quasicircles of dimension $1+k^2$ do not exist, arXiv: 1511.07240

[11] O. Ivrii, On Makarov's principle in conformal mapping, arXiv: 1604.05619

[12] I. R. Kayumov, “The law of the iterated logarithm for locally univalent functions”, Ann. Acad. Sci. Fenn. Math., 27:2 (2002), 357–364 | MR | Zbl

[13] Nhat Le Thanh Hoang, M. Zinsmeister, “On Minkowski dimension of Jordan curves”, Ann. Acad. Sci. Fenn. Math., 39:2 (2014), 787–810 | DOI | MR | Zbl

[14] T. Lyons, “A synthetic proof of Makarov's law of the iterated logarithm”, Bull. London Math. Soc., 22:2 (1990), 159–162 | DOI | MR | Zbl

[15] N. G. Makarov, “On the distortion of boundary sets under conformal mappings”, Proc. London Math. Soc. (3), 51:2 (1985), 369–384 | DOI | MR | Zbl

[16] N. G. Makarov, “Conformal mapping and Hausdorff measures”, Ark. Mat., 25:1 (1987), 41–89 | DOI | MR | Zbl

[17] N. G. Makarov, “Probability methods in the theory of conformal mappings”, Leningrad Math. J., 1:1 (1990), 1–56 | MR | Zbl

[18] C. T. McMullen, “Thermodynamics, dimension and the Weil–Petersson metric”, Invent. Math., 173:2 (2008), 365–425 | DOI | MR | Zbl

[19] A. Perälä, “On the optimal constant for the Bergman projection onto the Bloch space”, Ann. Acad. Sci. Fenn. Math., 37:1 (2012), 245–249 | DOI | MR | Zbl

[20] Ch. Pommerenke, “The growth of the derivative of a univalent function”, The Bieberbach conjecture (West Lafayette, IN, 1985), Math. Surveys Monogr., 21, Amer. Math. Soc., Providence, RI, 1986, 143–152 | MR | Zbl

[21] Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren Math. Wiss., 299, Springer-Verlag, Berlin, 1992, x+300 pp. | DOI | MR | Zbl

[22] F. Przytycki, “On the law of iterated logarithm for Bloch functions”, Studia Math., 93:2 (1989), 145–154 | MR | Zbl

[23] Kehe Zhu, Spaces of holomorphic functions in the unit ball, Grad. Texts in Math., 226, Springer-Verlag, New York, 2005, x+271 pp. | DOI | MR | Zbl