Makarov's principle for the Bloch unit ball
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 208 (2017) no. 3, pp. 399-412
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Makarov's principle relates three characteristics of Bloch functions that resemble the variance of a Gaussian: asymptotic variance, the constant in Makarov's law of iterated logarithm and the second derivative of the integral means spectrum at the origin. While these quantities need not be equal in general, we show that the universal bounds agree if we take the supremum over the Bloch unit ball. For the supremum (of either of these quantities), we give the estimate $\Sigma^2_{\mathscr B}  \min(0.9, \Sigma^2)$, where $\Sigma^2$ is the analogous quantity associated to the unit ball in the $L^\infty$ norm on the Bloch space. This improves on the upper bound in Pommerenke's estimate $0.685^2  \Sigma^2_{\mathscr B} \le 1$.
Bibliography: 23 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
law of the iterated logarithm, integral means spectrum, Bergman projection.
Mots-clés : Bloch space
                    
                  
                
                
                Mots-clés : Bloch space
@article{SM_2017_208_3_a5,
     author = {O. V. Ivrii and I. R. Kayumov},
     title = {Makarov's principle for the {Bloch} unit ball},
     journal = {Sbornik. Mathematics},
     pages = {399--412},
     publisher = {mathdoc},
     volume = {208},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_3_a5/}
}
                      
                      
                    O. V. Ivrii; I. R. Kayumov. Makarov's principle for the Bloch unit ball. Sbornik. Mathematics, Tome 208 (2017) no. 3, pp. 399-412. http://geodesic.mathdoc.fr/item/SM_2017_208_3_a5/
