Some observations concerning multidimensional quasiconformal mappings
Sbornik. Mathematics, Tome 208 (2017) no. 3, pp. 377-398

Voir la notice de l'article provenant de la source Math-Net.Ru

For several important objects and quantities in the theory of quasiconformal space mappings, we discuss their dependence on the dimension of the space. In particular, in connection with the global homeomorphism theorem and the theorem on the injectivity radius of quasiconformal immersions, we consider the asymptotic behaviour of the moduli of Grötzsch and Teichmüller rings with respect to the dimension. Bibliography: 23 titles.
Keywords: quasiconformal mapping, injectivity radius, conformal capacity, Grötzsch ring, Teichmüller ring.
@article{SM_2017_208_3_a4,
     author = {V. A. Zorich},
     title = {Some observations concerning multidimensional quasiconformal mappings},
     journal = {Sbornik. Mathematics},
     pages = {377--398},
     publisher = {mathdoc},
     volume = {208},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_3_a4/}
}
TY  - JOUR
AU  - V. A. Zorich
TI  - Some observations concerning multidimensional quasiconformal mappings
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 377
EP  - 398
VL  - 208
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_3_a4/
LA  - en
ID  - SM_2017_208_3_a4
ER  - 
%0 Journal Article
%A V. A. Zorich
%T Some observations concerning multidimensional quasiconformal mappings
%J Sbornik. Mathematics
%D 2017
%P 377-398
%V 208
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2017_208_3_a4/
%G en
%F SM_2017_208_3_a4
V. A. Zorich. Some observations concerning multidimensional quasiconformal mappings. Sbornik. Mathematics, Tome 208 (2017) no. 3, pp. 377-398. http://geodesic.mathdoc.fr/item/SM_2017_208_3_a4/