Some observations concerning multidimensional quasiconformal mappings
Sbornik. Mathematics, Tome 208 (2017) no. 3, pp. 377-398
Voir la notice de l'article provenant de la source Math-Net.Ru
For several important objects and quantities in the theory of quasiconformal space mappings, we discuss their dependence on the dimension of the space. In particular, in connection with the global homeomorphism theorem and the theorem on the injectivity radius of quasiconformal immersions, we consider the asymptotic behaviour of the moduli of Grötzsch and Teichmüller rings with respect to the dimension.
Bibliography: 23 titles.
Keywords:
quasiconformal mapping, injectivity radius, conformal capacity, Grötzsch ring, Teichmüller ring.
@article{SM_2017_208_3_a4,
author = {V. A. Zorich},
title = {Some observations concerning multidimensional quasiconformal mappings},
journal = {Sbornik. Mathematics},
pages = {377--398},
publisher = {mathdoc},
volume = {208},
number = {3},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_3_a4/}
}
V. A. Zorich. Some observations concerning multidimensional quasiconformal mappings. Sbornik. Mathematics, Tome 208 (2017) no. 3, pp. 377-398. http://geodesic.mathdoc.fr/item/SM_2017_208_3_a4/