@article{SM_2017_208_3_a4,
author = {V. A. Zorich},
title = {Some observations concerning multidimensional quasiconformal mappings},
journal = {Sbornik. Mathematics},
pages = {377--398},
year = {2017},
volume = {208},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_3_a4/}
}
V. A. Zorich. Some observations concerning multidimensional quasiconformal mappings. Sbornik. Mathematics, Tome 208 (2017) no. 3, pp. 377-398. http://geodesic.mathdoc.fr/item/SM_2017_208_3_a4/
[1] M. Lavrentieff, “Sur un critère différentiel des transformations homeomorphes des domaines à trois dimensions”, C. R. (Dokl.) Acad. Sci. URSS, 20:4 (1938), 241–242 | Zbl
[2] V. A. Zorič, “A theorem of M. A. Lavrent'ev on quasiconformal space maps”, Math. USSR-Sb., 3:3 (1967), 389–403 | DOI | MR | Zbl
[3] V. A. Zorich, “The global homeomorphism theorem for space quasiconformal mappings, its development and related open problems”, Quasiconformal space mappings, Lecture Notes in Math., 1508, Springer, Berlin, 1992, 132–148 | DOI | MR | Zbl
[4] V. A. Zorich, “Quasi-conformal maps and the asymptotic geometry of manifolds”, Russian Math. Surveys, 57:3 (2002), 437–462 | DOI | DOI | MR | Zbl
[5] M. Gromov, “Hyperbolic manifolds, groups and actions”, Riemann surfaces and related topics, Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, NY, 1978), Ann. of Math. Stud., 97, Princeton Univ. Press, Princeton, NJ, 1981, 183–213 | MR | Zbl
[6] M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, With appendices by M. Katz, P. Pansu, and S. Semmes, Progr. Math., 152, Based on the 1981 French original, Birkhäuser Boston, Inc., Boston, MA, 1999, xx+585 pp. | MR | Zbl
[7] G. D. Anderson, M. K. Vamanamurthy, M. K. Vuorinen, Conformal invariants, inequalities, and quasiconformal maps, Canad. Math. Soc. Ser. Monogr. Adv. Texts, John Wiley Sons, Inc., New York, 1997, xxviii+505 pp. | MR | Zbl
[8] V. A. Zorich, V. M. Kesel'man, “On the conformal type of a Riemannian manifold”, Funct. Anal. Appl., 30:2 (1996), 106–117 | DOI | DOI | MR | Zbl
[9] V. A. Zorich, “Asymptotic geometry and conformal types of Carnot–Carathéodory spaces”, Geom. Funct. Anal., 9:2 (1999), 393–411 | DOI | MR | Zbl
[10] V. A. Zorich, V. M. Kesel'man, “The isoperimetric inequality on manifolds of conformally hyperbolic type”, Funct. Anal. Appl., 35:2 (2001), 90–99 | DOI | DOI | MR | Zbl
[11] V. M. Kesel'man, “The isoperimetric inequality on conformally parabolic manifolds”, Sb. Math., 200:1 (2009), 1–33 | DOI | DOI | MR | Zbl
[12] V. M. Keselman, “On a criterion of conformal parabolicity of a Riemannian manifold”, Sb. Math., 206:3 (2015), 389–420 | DOI | DOI | MR | Zbl
[13] R. Nevanlinna, “On differentiable mappings”, Analytic functions, Princeton Math. Series, 24, Princeton Univ. Press, Princeton, NJ, 1960, 3–9 | MR | Zbl
[14] O. Martio, S. Rickman, J. Väisälä, “Topological and metric properties of quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. A. I, 488 (1971), 1–31 | MR | Zbl
[15] F. John, “On quasi-isometric mappings. II”, Comm. Pure Appl. Math., 22:2 (1969), 265–278 | DOI | MR | Zbl
[16] V. A. Zorich, “A note on the injectivity radius of quasiconformal immersions”, Russian Math. Surveys, 71:1 (2016), 161–163 | DOI | DOI | MR | Zbl
[17] V. A. Zorich, “Asymptotic behavior at infinity of the admissible growth of the quasiconformality coefficient and the injectivity of immersions of sub-Riemannian manifolds”, Proc. Steklov Inst. Math., 279 (2012), 73–77 | DOI | MR | Zbl
[18] V. A. Zorich, “On the measure of conformal difference between Euclidean and Lobachevsky spaces”, Sb. Math., 202:12 (2011), 1825–1830 | DOI | DOI | MR | Zbl
[19] I. Holopainen, S. Rickman, “Quasiregular mappings of the Heisenberg group”, Math. Ann., 294:4 (1992), 625–643 | DOI | MR | Zbl
[20] V. A. Zorich, “Multidimensional geometry, functions of very many variables, and probability”, Theory Probab. Appl., 59:3 (2015), 481–493 | DOI | DOI | MR | Zbl
[21] J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, New York, 1993, vi+363 pp. | MR | Zbl
[22] T. Coulhon, I. Holopainen, L. Salof-Coste, “Harnack inequality and hyperbolicity for subelliptic $p$-Laplacian with applications to Picard type theorems”, Geom. Funct. Anal., 11:6 (2001), 1139–1191 | DOI | MR | Zbl
[23] M. L. Gromov, “Colourful categories”, Russian Math. Surveys, 70:4 (2015), 591–655 | DOI | DOI | MR | Zbl