Mots-clés : domain of univalence, coefficient region.
@article{SM_2017_208_3_a3,
author = {V. V. Goryainov},
title = {Holomorphic mappings of the unit disc into itself with two fixed points},
journal = {Sbornik. Mathematics},
pages = {360--376},
year = {2017},
volume = {208},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_3_a3/}
}
V. V. Goryainov. Holomorphic mappings of the unit disc into itself with two fixed points. Sbornik. Mathematics, Tome 208 (2017) no. 3, pp. 360-376. http://geodesic.mathdoc.fr/item/SM_2017_208_3_a3/
[1] L. V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Math., McGraw-Hill Book Co., New York–Düsseldorf–Johannesburg, 1973, ix+157 pp. | MR | Zbl
[2] V. V. Goryainov, “Evolution families of conformal mappings with fixed points and the Löwner–Kufarev equation”, Sb. Math., 206:1 (2015), 33–60 | DOI | DOI | MR | Zbl
[3] Z. Nehari, “Some inequalities in the theory of functions”, Trans. Amer. Math. Soc., 75:2 (1953), 256–286 | DOI | MR | Zbl
[4] A. Yu. Solynin, “The boundary distortion and extremal problems in certain classes of univalent functions”, J. Math. Sci. (N. Y.), 79:5 (1996), 1341–1358 | DOI | MR | Zbl
[5] Ch. Pommerenke, A. Vasil'ev, “Angular derivatives of bounded univalent functions and extremal partitions of the unit disk”, Pacific. J. Math., 206:2 (2002), 425–450 | DOI | MR | Zbl
[6] V. N. Dubinin, V. Yu. Kim, “Distortion theorems for functions regular and bounded in the disk”, J. Math. Sci. (N. Y.), 150:3 (2008), 2018–2026 | DOI | MR
[7] J. M. Anderson, A. Vasil'ev, “Lower Schwarz–Pick estimates and angular derivatives”, Ann. Acad. Sci. Fenn. Math., 33:1 (2008), 101–110 | MR | Zbl
[8] V. N. Dubinin, “The Schwarz inequality on the boundary for functions regular in the disk”, J. Math. Sci. (N. Y.), 122:6 (2004), 3623–3629 | DOI | MR | Zbl
[9] E. Landau, “Der Picard–Schottkysche Satz und die Blochsche Konstante”, Sitzungsber. Preuss. Akad. Wiss. Berlin, Phys.-Math. Kl., 32 (1926), 467–474 | Zbl
[10] V. N. Dubinin, “Schwarzian derivative and covering arcs of a pencil of circles by holomorphic functions”, Math. Notes, 98:6 (2015), 920–925 | DOI | DOI | MR | Zbl
[11] R. Nevanlinna, “Remarques sur le lemme de Schwarz”, C. R. Acad. Sci. Paris, 188 (1929), 1027–1029 | Zbl
[12] A. Poltoratski, D. Sarason, “Aleksandrov–Clark measures”, Recent advances in operator-related function theory, Contemp. Math., 393, Amer. Math. Soc., Providence, RI, 2006, 1–14 | DOI | MR | Zbl
[13] A. Matheson, M. Stessin, “Applications of spectral measures”, Recent advances in operator-related function theory, Contemp. Math., 393, Amer. Math. Soc., Providence, RI, 2006, 15–27 | DOI | MR | Zbl
[14] P. L. Duren, Univalent functions, Grundlehren Math. Wiss., 259, Springer-Verlag, New York, 1983, xiv+382 pp. | MR | Zbl
[15] J. Schur, “Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind”, J. Reine Angew. Math., 1917:147 (1917), 205–232 | DOI | MR | Zbl
[16] G. M. Goluzin, Geometric theory of functions of a complex variable, Transl. Math. Monogr., 26, Amer. Math. Soc., Providence, RI, 1969, vi+676 pp. | MR | MR | Zbl | Zbl
[17] M. Tsuji, Potential theory in modern function theory, Reprint of the 1959 original, Chelsea Publishing Co., New York, 1975, x+590 pp. | MR | Zbl
[18] P. Henrici, Applied and computational complex analysis, v. 1, Wiley Classics Lib., Power series–integration–conformal mapping–location of zeros, Reprint of the 1974 original, John Wiley Sons, Inc., New York, 1988, xviii+682 pp. | MR | Zbl
[19] U. Grenander, G. Szegö, Toeplitz forms and their applications, California Monographs in Mathematical Sciences, Univ. of California Press, Berkeley–Los Angeles, 1958, vii+245 pp. | MR | MR | Zbl | Zbl