Holomorphic mappings of the unit disc into itself with two fixed points
Sbornik. Mathematics, Tome 208 (2017) no. 3, pp. 360-376 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is concerned with holomorphic mappings of the unit disc into itself with two fixed points. Two cases are considered: when one fixed point lies inside the disc and the other lies on the boundary and when both fixed points lie on the boundary. The effect that angular derivatives at boundary fixed points have on the properties of functions inside the unit disc is studied. Conditions on the angular derivatives to guarantee the existence of domains of univalence inside the unit disc are given. The effect of the angular derivatives on the values of the Taylor coefficients of functions is also examined. Bibliography: 19 titles.
Keywords: holomorphic mapping, fixed point, angular derivative
Mots-clés : domain of univalence, coefficient region.
@article{SM_2017_208_3_a3,
     author = {V. V. Goryainov},
     title = {Holomorphic mappings of the unit disc into itself with two fixed points},
     journal = {Sbornik. Mathematics},
     pages = {360--376},
     year = {2017},
     volume = {208},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_3_a3/}
}
TY  - JOUR
AU  - V. V. Goryainov
TI  - Holomorphic mappings of the unit disc into itself with two fixed points
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 360
EP  - 376
VL  - 208
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_3_a3/
LA  - en
ID  - SM_2017_208_3_a3
ER  - 
%0 Journal Article
%A V. V. Goryainov
%T Holomorphic mappings of the unit disc into itself with two fixed points
%J Sbornik. Mathematics
%D 2017
%P 360-376
%V 208
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2017_208_3_a3/
%G en
%F SM_2017_208_3_a3
V. V. Goryainov. Holomorphic mappings of the unit disc into itself with two fixed points. Sbornik. Mathematics, Tome 208 (2017) no. 3, pp. 360-376. http://geodesic.mathdoc.fr/item/SM_2017_208_3_a3/

[1] L. V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Math., McGraw-Hill Book Co., New York–Düsseldorf–Johannesburg, 1973, ix+157 pp. | MR | Zbl

[2] V. V. Goryainov, “Evolution families of conformal mappings with fixed points and the Löwner–Kufarev equation”, Sb. Math., 206:1 (2015), 33–60 | DOI | DOI | MR | Zbl

[3] Z. Nehari, “Some inequalities in the theory of functions”, Trans. Amer. Math. Soc., 75:2 (1953), 256–286 | DOI | MR | Zbl

[4] A. Yu. Solynin, “The boundary distortion and extremal problems in certain classes of univalent functions”, J. Math. Sci. (N. Y.), 79:5 (1996), 1341–1358 | DOI | MR | Zbl

[5] Ch. Pommerenke, A. Vasil'ev, “Angular derivatives of bounded univalent functions and extremal partitions of the unit disk”, Pacific. J. Math., 206:2 (2002), 425–450 | DOI | MR | Zbl

[6] V. N. Dubinin, V. Yu. Kim, “Distortion theorems for functions regular and bounded in the disk”, J. Math. Sci. (N. Y.), 150:3 (2008), 2018–2026 | DOI | MR

[7] J. M. Anderson, A. Vasil'ev, “Lower Schwarz–Pick estimates and angular derivatives”, Ann. Acad. Sci. Fenn. Math., 33:1 (2008), 101–110 | MR | Zbl

[8] V. N. Dubinin, “The Schwarz inequality on the boundary for functions regular in the disk”, J. Math. Sci. (N. Y.), 122:6 (2004), 3623–3629 | DOI | MR | Zbl

[9] E. Landau, “Der Picard–Schottkysche Satz und die Blochsche Konstante”, Sitzungsber. Preuss. Akad. Wiss. Berlin, Phys.-Math. Kl., 32 (1926), 467–474 | Zbl

[10] V. N. Dubinin, “Schwarzian derivative and covering arcs of a pencil of circles by holomorphic functions”, Math. Notes, 98:6 (2015), 920–925 | DOI | DOI | MR | Zbl

[11] R. Nevanlinna, “Remarques sur le lemme de Schwarz”, C. R. Acad. Sci. Paris, 188 (1929), 1027–1029 | Zbl

[12] A. Poltoratski, D. Sarason, “Aleksandrov–Clark measures”, Recent advances in operator-related function theory, Contemp. Math., 393, Amer. Math. Soc., Providence, RI, 2006, 1–14 | DOI | MR | Zbl

[13] A. Matheson, M. Stessin, “Applications of spectral measures”, Recent advances in operator-related function theory, Contemp. Math., 393, Amer. Math. Soc., Providence, RI, 2006, 15–27 | DOI | MR | Zbl

[14] P. L. Duren, Univalent functions, Grundlehren Math. Wiss., 259, Springer-Verlag, New York, 1983, xiv+382 pp. | MR | Zbl

[15] J. Schur, “Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind”, J. Reine Angew. Math., 1917:147 (1917), 205–232 | DOI | MR | Zbl

[16] G. M. Goluzin, Geometric theory of functions of a complex variable, Transl. Math. Monogr., 26, Amer. Math. Soc., Providence, RI, 1969, vi+676 pp. | MR | MR | Zbl | Zbl

[17] M. Tsuji, Potential theory in modern function theory, Reprint of the 1959 original, Chelsea Publishing Co., New York, 1975, x+590 pp. | MR | Zbl

[18] P. Henrici, Applied and computational complex analysis, v. 1, Wiley Classics Lib., Power series–integration–conformal mapping–location of zeros, Reprint of the 1974 original, John Wiley Sons, Inc., New York, 1988, xviii+682 pp. | MR | Zbl

[19] U. Grenander, G. Szegö, Toeplitz forms and their applications, California Monographs in Mathematical Sciences, Univ. of California Press, Berkeley–Los Angeles, 1958, vii+245 pp. | MR | MR | Zbl | Zbl