Symmetric moment problems and a~conjecture of Valent
Sbornik. Mathematics, Tome 208 (2017) no. 3, pp. 335-359

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1998 Valent made conjectures about the order and type of certain indeterminate Stieltjes moment problems associated with birth and death processes which have polynomial birth and death rates of degree $p\geqslant 3$. Romanov recently proved that the order is $1/p$ as conjectured. We prove that the type with respect to the order is related to certain multi-zeta values and that this type belongs to the interval $$ \biggl[\frac{\pi}{p\sin(\pi/p)},\,\frac{\pi}{p\sin(\pi/p)\cos(\pi/p)}\biggr], $$ which also contains the conjectured value. This proves that the conjecture about type is asymptotically correct as $p\to\infty$. The main idea is to obtain estimates for order and type of symmetric indeterminate Hamburger moment problems when the orthonormal polynomials $P_n$ and those of the second kind $Q_n$ satisfy $P_{2n}^2(0)\sim c_1n^{-1/\beta}$ and $Q_{2n-1}^2(0)\sim c_2 n^{-1/\alpha}$, where $0\alpha,\beta1$ may be different, and $c_1$ and $c_2$ are positive constants. In this case the order of the moment problem is majorized by the harmonic mean of $\alpha$ and $\beta$. Here $\alpha_n\sim \beta_n$ means that $\alpha_n/\beta_n\to 1$. This also leads to a new proof of Romanov's Theorem that the order is $1/p$. Bibliography: 19 titles.
Keywords: indeterminate moment problem, birth and death process with polynomial rates, multi-zeta values.
@article{SM_2017_208_3_a2,
     author = {Ch. Berg and R. Szwarc},
     title = {Symmetric moment problems and a~conjecture of {Valent}},
     journal = {Sbornik. Mathematics},
     pages = {335--359},
     publisher = {mathdoc},
     volume = {208},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_3_a2/}
}
TY  - JOUR
AU  - Ch. Berg
AU  - R. Szwarc
TI  - Symmetric moment problems and a~conjecture of Valent
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 335
EP  - 359
VL  - 208
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_3_a2/
LA  - en
ID  - SM_2017_208_3_a2
ER  - 
%0 Journal Article
%A Ch. Berg
%A R. Szwarc
%T Symmetric moment problems and a~conjecture of Valent
%J Sbornik. Mathematics
%D 2017
%P 335-359
%V 208
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2017_208_3_a2/
%G en
%F SM_2017_208_3_a2
Ch. Berg; R. Szwarc. Symmetric moment problems and a~conjecture of Valent. Sbornik. Mathematics, Tome 208 (2017) no. 3, pp. 335-359. http://geodesic.mathdoc.fr/item/SM_2017_208_3_a2/