Symmetric moment problems and a conjecture of Valent
Sbornik. Mathematics, Tome 208 (2017) no. 3, pp. 335-359 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In 1998 Valent made conjectures about the order and type of certain indeterminate Stieltjes moment problems associated with birth and death processes which have polynomial birth and death rates of degree $p\geqslant 3$. Romanov recently proved that the order is $1/p$ as conjectured. We prove that the type with respect to the order is related to certain multi-zeta values and that this type belongs to the interval $$ \biggl[\frac{\pi}{p\sin(\pi/p)},\,\frac{\pi}{p\sin(\pi/p)\cos(\pi/p)}\biggr], $$ which also contains the conjectured value. This proves that the conjecture about type is asymptotically correct as $p\to\infty$. The main idea is to obtain estimates for order and type of symmetric indeterminate Hamburger moment problems when the orthonormal polynomials $P_n$ and those of the second kind $Q_n$ satisfy $P_{2n}^2(0)\sim c_1n^{-1/\beta}$ and $Q_{2n-1}^2(0)\sim c_2 n^{-1/\alpha}$, where $0<\alpha,\beta<1$ may be different, and $c_1$ and $c_2$ are positive constants. In this case the order of the moment problem is majorized by the harmonic mean of $\alpha$ and $\beta$. Here $\alpha_n\sim \beta_n$ means that $\alpha_n/\beta_n\to 1$. This also leads to a new proof of Romanov's Theorem that the order is $1/p$. Bibliography: 19 titles.
Keywords: indeterminate moment problem, birth and death process with polynomial rates, multi-zeta values.
@article{SM_2017_208_3_a2,
     author = {Ch. Berg and R. Szwarc},
     title = {Symmetric moment problems and a~conjecture of {Valent}},
     journal = {Sbornik. Mathematics},
     pages = {335--359},
     year = {2017},
     volume = {208},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_3_a2/}
}
TY  - JOUR
AU  - Ch. Berg
AU  - R. Szwarc
TI  - Symmetric moment problems and a conjecture of Valent
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 335
EP  - 359
VL  - 208
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_3_a2/
LA  - en
ID  - SM_2017_208_3_a2
ER  - 
%0 Journal Article
%A Ch. Berg
%A R. Szwarc
%T Symmetric moment problems and a conjecture of Valent
%J Sbornik. Mathematics
%D 2017
%P 335-359
%V 208
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2017_208_3_a2/
%G en
%F SM_2017_208_3_a2
Ch. Berg; R. Szwarc. Symmetric moment problems and a conjecture of Valent. Sbornik. Mathematics, Tome 208 (2017) no. 3, pp. 335-359. http://geodesic.mathdoc.fr/item/SM_2017_208_3_a2/

[1] N. I. Akhiezer, The classical moment problem and some related questions in analysis, Hafner Publishing Co., New York, 1965, x+253 pp. | MR | MR | Zbl | Zbl

[2] E. Artin, The gamma function, Athena Series: Selected Topics in Mathematics, Holt, Rinehart and Winston, New York–Toronto–London, 1964, vii+39 pp. | MR | Zbl

[3] C. Berg, “Indeterminate moment problems and the theory of entire functions”, J. Comput. Appl. Math., 65:1–3 (1995), 27–55 | DOI | MR | Zbl

[4] C. Berg, H. L. Pedersen, “On the order and type of the entire functions associated with an indeterminate Hamburger moment problem”, Ark. Mat., 32:1 (1994), 1–11 | DOI | MR | Zbl

[5] C. Berg, R. Szwarc, “On the order of indeterminate moment problems”, Adv. Math., 250 (2014), 105–143 | DOI | MR | Zbl

[6] C. Berg, G. Valent, “The Nevanlinna parametrization for some indeterminate Stieltjes moment problems associated with birth and death processes”, Methods Appl. Anal., 1:2 (1994), 169–209 | DOI | MR | Zbl

[7] R. P. Boas, Jr., Entire functions, Academic Press Inc., New York, 1954, x+276 pp. | MR | Zbl

[8] T. S. Chihara, “Indeterminate symmetric moment problems”, J. Math. Anal. Appl., 85:2 (1982), 331–346 | DOI | MR | Zbl

[9] J. Gilewicz, E. Leopold, G. Valent, “New Nevanlinna matrices for orthogonal polynomials related to cubic birth and death processes”, J. Comput. Appl. Math., 178:1-2 (2005), 235–245 | DOI | MR | Zbl

[10] J. Gilewicz, E. Leopold, A. Ruffing, G. Valent, “Some cubic birth and death processes and their related orthogonal polynomials”, Constr. Approx., 24 (2006), 71–89 | DOI | MR | Zbl

[11] M. E. H. Ismail, D. R. Masson, J. Letessier, G. Valent, “Birth and death processes and orthogonal polynomials”, Orthogonal polynomials (Columbus, OH, 1989), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 294, Kluwer Acad. Publ., Dordrecht, 1990, 229–255 | DOI | MR | Zbl

[12] S. Karlin, J. L. McGregor, “The differential equations of birth-and-death processes and the Stieltjes moment problem”, Trans. Amer. Math. Soc., 85:2 (1957), 489–546 | DOI | MR | Zbl

[13] H. L. Pedersen, “The Nevanlinna matrix of entire functions associated with a shifted indeterminate Hamburger moment problem”, Math. Scand., 74:1 (1994), 152–160 | DOI | MR | Zbl

[14] R. Romanov, “Order problem for canonical systems and a conjecture of Valent”, Trans. Amer. Math. Soc. (to appear); 2015, arXiv: 1502.04402

[15] J. Shohat, J. D. Tamarkin, The problem of moments, Amer. Math. Soc. Math. Surv., 1, rev. ed., Amer. Math. Soc., Providence, RI, 1950, xiv+144 pp. | MR | Zbl

[16] B. Simon, “The classical moment problem as a self-adjoint finite difference operator”, Adv. Math., 137:1 (1998), 82–203 | DOI | MR | Zbl

[17] G. Valent, “Indeterminate moment problems and a conjecture on the growth of the entire functions of the Nevanlinna parametrization”, Applications and computation of orthogonal polynomials (Oberwolfach, 1998), Internat. Ser. Numer. Math., 131, Birkhäuser, Basel, 1999, 227–237 | MR | Zbl

[18] G. Valent, “From asymptotics to spectral measures: determinate versus indeterminate moment problems”, Mediterr. J. Math., 3:2 (2006), 327–345 | DOI | MR | Zbl

[19] W. V. Zudilin, “Algebraic relations for multiple zeta values”, Russian Math. Surveys, 58:1 (2003), 1–29 | DOI | DOI | MR | Zbl