Convergence of ray sequences of Frobenius-Padé approximants
Sbornik. Mathematics, Tome 208 (2017) no. 3, pp. 313-334 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\widehat\sigma$ be a Cauchy transform of a possibly complex-valued Borel measure $\sigma$ and $\{p_n\}$ a system of orthonormal polynomials with respect to a measure $\mu$, where $\operatorname{supp}(\mu)\cap\operatorname{supp}(\sigma)=\varnothing$. An $(m,n)$th Frobenius-Padé approximant to $\widehat\sigma$ is a rational function $P/Q$, $\deg(P)\leq m$, $\deg(Q)\leq n$, such that the first $m+n+1$ Fourier coefficients of the remainder function $Q\widehat\sigma-P$ vanish when the form is developed into a series with respect to the polynomials $p_n$. We investigate the convergence of the Frobenius-Padé approximants to $\widehat\sigma$ along ray sequences $n/(n+m+1)\to c>0$, $n-1\leq m$, when $\mu$ and $\sigma$ are supported on intervals of the real line and their Radon-Nikodym derivatives with respect to the arcsine distribution of the corresponding interval are holomorphic functions. Bibliography: 30 titles.
Keywords: linear Padé-Chebyshev approximants, orthogonality, Markov-type functions, Riemann-Hilbert matrix problem.
Mots-clés : Frobenius-Padé approximants, Padé approximants of orthogonal expansions
@article{SM_2017_208_3_a1,
     author = {A. I. Aptekarev and A. I. Bogolyubskii and M. Yattselev},
     title = {Convergence of ray sequences of {Frobenius-Pad\'e} approximants},
     journal = {Sbornik. Mathematics},
     pages = {313--334},
     year = {2017},
     volume = {208},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_3_a1/}
}
TY  - JOUR
AU  - A. I. Aptekarev
AU  - A. I. Bogolyubskii
AU  - M. Yattselev
TI  - Convergence of ray sequences of Frobenius-Padé approximants
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 313
EP  - 334
VL  - 208
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_3_a1/
LA  - en
ID  - SM_2017_208_3_a1
ER  - 
%0 Journal Article
%A A. I. Aptekarev
%A A. I. Bogolyubskii
%A M. Yattselev
%T Convergence of ray sequences of Frobenius-Padé approximants
%J Sbornik. Mathematics
%D 2017
%P 313-334
%V 208
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2017_208_3_a1/
%G en
%F SM_2017_208_3_a1
A. I. Aptekarev; A. I. Bogolyubskii; M. Yattselev. Convergence of ray sequences of Frobenius-Padé approximants. Sbornik. Mathematics, Tome 208 (2017) no. 3, pp. 313-334. http://geodesic.mathdoc.fr/item/SM_2017_208_3_a1/

[1] Chebfun guide, eds. T. A. Driscoll, N. Hale, L. N. Trefethen, Pafnuty Publications, Oxford, 2014

[2] C. W. Clenshaw, K. Lord, “Rational approximations from Chebyshev series”, Studies in numerical analysis, Academic Press, London, 1974, 95–113 | MR | Zbl

[3] W. B. Gragg, “Laurent, Fourier, and Chebychev–Padé tables”, Padé and rational approximation (Univ. South Florida, Tampa, FL, 1976), Academic Press, New York, 1977, 61–72 | MR | Zbl

[4] G. A. Baker, P. Graves-Morris, Pade approximants, v. 1, 2, Encyclopedia Math. Appl., 13, 14, Addison-Wesley Publishing Co., Reading, Mass., 1996, xx+325 pp., xviii+215 pp. | MR | MR | MR | Zbl | Zbl

[5] S. P. Suetin, “On the convergence of rational approximations to polynomial expansions in domains of meromorphy of a given function”, Math. USSR-Sb., 34:3 (1978), 367–381 | DOI | MR | Zbl

[6] S. P. Suetin, “Inverse theorems on generalized Padé approximants”, Math. USSR-Sb., 37:4 (1980), 581–597 | DOI | MR | Zbl

[7] A. A. Gonchar, E. A. Rakhmanov, S. P. Suetin, “On the convergence of Padé approximation of orthogonal expansions”, Proc. Steklov Inst. Math., 200 (1993), 149–159 | MR | Zbl

[8] A. A. Gonchar, E. A. Rakhmanov, S. P. Suetin, “On the rate of convergence of Padé approximants of orthogonal expansions”, Progress in approximation theory (Tampa, FL, 1990), Springer Ser. Comput. Math., 19, Springer, New York, 1992, 169–190 | DOI | MR | Zbl

[9] E. M. Nikishin, “Asymptotic behavior of linear forms for joint Padé approximations”, Soviet Math. (Iz. VUZ), 30:2 (1986), 43–52 | MR | Zbl

[10] A. A. Gonchar, E. A. Rakhmanov, V. N. Sorokin, “Hermite–Padé approximants for systems of Markov-type functions”, Sb. Math., 188:5 (1997), 671–696 | DOI | DOI | MR | Zbl

[11] A. I. Aptekarev, V. G. Lysov, “Systems of Markov functions generated by graphs and the asymptotics of their Hermite–Padé approximants”, Sb. Math., 201:2 (2010), 183–234 | DOI | DOI | MR | Zbl

[12] A. A. Gonchar, E. A. Rakhmanov, “Equilibrium measure and the distribution of zeros of extremal polynomials”, Math. USSR-Sb., 53:1 (1986), 119–130 | DOI | MR | Zbl

[13] E. B. Saff, V. Totik, Logarithmic potentials with external fields, Grundlehren Math. Wiss., 316, Springer-Verlag, Berlin, 1997, xvi+505 pp. | DOI | MR | Zbl

[14] J. Nuttall, “Asymptotics of diagonal Hermite–Padé polynomials”, J. Approx. Theory, 42:4 (1984), 299–386 | DOI | MR | Zbl

[15] M. L. Yattselev, “Strong asymptotics of Hermite–Padé approximants for Angelesco systems”, Canad. J. Math., 68:5 (2016), 1159–1200 | DOI | MR | Zbl

[16] A. S. Fokas, A. R. Its, A. V. Kitaev, “Discrete Painlevé equations and their appearance in quantum gravity”, Comm. Math. Phys., 142:2 (1991), 313–344 | DOI | MR | Zbl

[17] A. S. Fokas, A. R. Its, A. V. Kitaev, “The isomonodromy approach to matrix models in 2D quantum gravity”, Comm. Math. Phys., 147:2 (1992), 395–430 | DOI | MR | Zbl

[18] A. I. Aptekarev, A. I. Bogolyubskii, “Matrichnaya zadacha Rimana–Gilberta dlya approksimatsii Pade po ortogonalnym razlozheniyam”, Preprinty IPM im. M. V. Keldysha, 2014, 103, 16 pp.

[19] P. Deift, X. Zhou, “A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation”, Ann. of Math. (2), 137:2 (1993), 295–368 | DOI | MR | Zbl

[20] M. Vanlessen, “Strong asymptotics of the recurrence coefficients of orthogonal polynomials associated to the generalized Jacobi weight”, J. Approx. Theory, 125:2 (2003), 198–237 | DOI | MR | Zbl

[21] A. Foulquié Moreno, A. Martínez-Finkelshtein, V. L. Sousa, “On a conjecture of A. Magnus concerning the asymptotic behavior of the recurrence coefficients of the generalized Jacobi polynomials”, J. Approx. Theory, 162:4 (2010), 807–831 | DOI | MR | Zbl

[22] A. Foulquié Moreno, A. Martínez-Finkelshtein, V. L. Sousa, “Asymptotics of orthogonal polynomials for a weight with a jump on $[-1,1]$”, Constr. Approx., 33:2 (2011), 219–263 | DOI | MR | Zbl

[23] P. Deift, A. Its, I. Krasovsky, “Asymptotics of Toeplitz, Hankel, and Toeplitz+Hankel determinants with Fisher–Hartwig singularities”, Ann. of Math. (2), 174:2 (2011), 1243–1299 | DOI | MR | Zbl

[24] A. I. Bogolyubskii, “Strong asymptotics of diagonal Frobenius–Padé approximants and Nikishin systems”, Math. Notes, 99:6 (2016), 938–941 | DOI | DOI | MR | Zbl

[25] A. I. Aptekarev, “Strong asymptotics of multiply orthogonal polynomials for Nikishin systems”, Sb. Math., 190:5 (1999), 631–669 | DOI | DOI | MR | Zbl

[26] T. Ransford, Potential theory in the complex plane, London Math. Soc. Stud. Texts, 28, Cambridge Univ. Press, Cambridge, 1995, x+232 pp. | DOI | MR | Zbl

[27] F. D. Gakhov, Boundary value problems, Reprint of the 1966 transl., Dover Publications, Inc., New York, 1990, xxii+561 pp. | MR | MR | Zbl | Zbl

[28] P. Deift, Orthogonal polynomials and random matrices: a Riemann–Hilbert approach, Courant Lect. Notes Math., 3, New York Univ., Courant Inst. of Math. Sci., New York; Amer. Math. Soc., Providence, RI, 2000, ix+261 pp. | DOI | MR | Zbl

[29] A. R. Its, A. B. J. Kuijlaars, J. Östensson, “Critical edge behavior in unitary random matrix ensembles and the thirty-fourth Painlevé transcendent”, Int. Math. Res. Not. IMRN, 2008 (2008), rnn017, 67 pp. | DOI | MR | Zbl

[30] A. R. Its, A. B. J. Kuijlaars and J. Östensson, “Asymptotics for a special solution of the thirty fourth Painlevé equation”, Nonlinearity, 22:7 (2009), 1523–1558 | DOI | MR | Zbl