Convergence of ray sequences of Frobenius-Pad\'e approximants
Sbornik. Mathematics, Tome 208 (2017) no. 3, pp. 313-334
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\widehat\sigma$ be a Cauchy transform of a possibly complex-valued Borel measure $\sigma$ and $\{p_n\}$ a system of orthonormal polynomials with respect to a measure $\mu$, where $\operatorname{supp}(\mu)\cap\operatorname{supp}(\sigma)=\varnothing$. An $(m,n)$th Frobenius-Padé approximant to $\widehat\sigma$ is a rational function $P/Q$, $\deg(P)\leq m$, $\deg(Q)\leq n$, such that the first $m+n+1$ Fourier coefficients of the remainder function $Q\widehat\sigma-P$ vanish when the form is developed into a series with respect to the polynomials $p_n$. We investigate the convergence of the Frobenius-Padé approximants to $\widehat\sigma$ along ray sequences $n/(n+m+1)\to c>0$, $n-1\leq m$, when $\mu$ and $\sigma$ are supported on intervals of the real line and their Radon-Nikodym derivatives with respect to the arcsine distribution of the corresponding interval are holomorphic functions.
Bibliography: 30 titles.
Keywords:
linear Padé-Chebyshev approximants, Padé approximants of orthogonal expansions, orthogonality, Markov-type functions, Riemann-Hilbert matrix problem.
Mots-clés : Frobenius-Padé approximants
Mots-clés : Frobenius-Padé approximants
@article{SM_2017_208_3_a1,
author = {A. I. Aptekarev and A. I. Bogolyubskii and M. Yattselev},
title = {Convergence of ray sequences of {Frobenius-Pad\'e} approximants},
journal = {Sbornik. Mathematics},
pages = {313--334},
publisher = {mathdoc},
volume = {208},
number = {3},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_3_a1/}
}
TY - JOUR AU - A. I. Aptekarev AU - A. I. Bogolyubskii AU - M. Yattselev TI - Convergence of ray sequences of Frobenius-Pad\'e approximants JO - Sbornik. Mathematics PY - 2017 SP - 313 EP - 334 VL - 208 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2017_208_3_a1/ LA - en ID - SM_2017_208_3_a1 ER -
A. I. Aptekarev; A. I. Bogolyubskii; M. Yattselev. Convergence of ray sequences of Frobenius-Pad\'e approximants. Sbornik. Mathematics, Tome 208 (2017) no. 3, pp. 313-334. http://geodesic.mathdoc.fr/item/SM_2017_208_3_a1/