An estimate for the number of eigenvalues of the Schrödinger operator with a complex potential
Sbornik. Mathematics, Tome 208 (2017) no. 2, pp. 269-284 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the Schrödinger operator whose potential is rapidly decreasing at infinity, an estimate for the number of eigenvalues is given, thus answering a question going back to Gelfand. The case of three-dimensional configuration space is chosen for simplicity of presentation; all the results formulated in the paper can be extended to an arbitrary number of degrees of freedom. Bibliography: 19 titles.
Keywords: Schrödinger operator, Fredholm determinant, total multiplicity of eigenvalues.
@article{SM_2017_208_2_a5,
     author = {S. A. Stepin},
     title = {An estimate for the number of eigenvalues of the {Schr\"odinger} operator with a~complex potential},
     journal = {Sbornik. Mathematics},
     pages = {269--284},
     year = {2017},
     volume = {208},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_2_a5/}
}
TY  - JOUR
AU  - S. A. Stepin
TI  - An estimate for the number of eigenvalues of the Schrödinger operator with a complex potential
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 269
EP  - 284
VL  - 208
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_2_a5/
LA  - en
ID  - SM_2017_208_2_a5
ER  - 
%0 Journal Article
%A S. A. Stepin
%T An estimate for the number of eigenvalues of the Schrödinger operator with a complex potential
%J Sbornik. Mathematics
%D 2017
%P 269-284
%V 208
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2017_208_2_a5/
%G en
%F SM_2017_208_2_a5
S. A. Stepin. An estimate for the number of eigenvalues of the Schrödinger operator with a complex potential. Sbornik. Mathematics, Tome 208 (2017) no. 2, pp. 269-284. http://geodesic.mathdoc.fr/item/SM_2017_208_2_a5/

[1] A. Akhiezer, I. Pomeranchuk, Nekotorye voprosy teorii yadra, Gostekhizdat, M., 1948, 320 pp.

[2] M. V. Keldysh, “O sobstvennykh znacheniyakh i sobstvennykh funktsiyakh nekotorykh klassov nesamosopryazhennykh uravnenii”, Dokl. AN SSSR, 77:1 (1951), 11–14 | MR | Zbl

[3] I. M. Gelfand, “O spektre nesamosopryazhennykh differentsialnykh operatorov”, UMN, 7:6(52) (1952), 183–184 | MR | Zbl

[4] M. A. Naimark, “O spektre singulyarnykh nesamosopryazhennykh differentsialnykh operatorov vtorogo poryadka”, Dokl. AN SSSR, 85:1 (1952), 41–44 | MR | Zbl

[5] V. B. Lidskii, “Teorema o spektre vozmuschennogo differentsialnogo operatora”, Dokl. AN SSSR, 112:6 (1957), 994–997 | MR | Zbl

[6] E. B. Davies, “Non-self-adjoint differential operators”, Bull. London Math. Soc., 34:5 (2002), 513–532 | DOI | MR | Zbl

[7] B. Simon, Trace ideals and their applications, London Math. Soc. Lecture Note Ser., 35, Cambridge Univ. Press, Cambridge–New York, 1979, viii+134 pp. | MR | Zbl

[8] R. M. Martirosyan, “O spektre nekotorykh vozmuschenii operatora Laplasa v mnogomernom i trekhmernom prostranstvakh”, Izv. AN SSSR. Ser. matem., 24:6 (1960), 897–920 | MR | Zbl

[9] T. Kato, “Wave operators and similarity for some non-selfadjoint operators”, Math. Ann., 162:2 (1966), 258–279 | DOI | MR | Zbl

[10] R. L. Frank, “Eigenvalue bounds for Schrödinger operators with complex potentials”, Bull. Lond. Math. Soc., 43:4 (2011), 745–750 | DOI | MR | Zbl

[11] M. Demuth, M. Hansmann, G. Katriel, “Lieb–Thirring type inequalities for Schrödinger operators with a complex-valued potential”, Integral Equations Operator Theory, 75:1 (2013), 1–5 | DOI | MR | Zbl

[12] R. L. Frank, A. Laptev, E. H. Lieb, R. Seiringer, “Lieb–Thirring inequalities for Schrödinger operators with complex-valued potentials”, Lett. Math. Phys., 77:3 (2006), 309–316 | DOI | MR | Zbl

[13] S. A. Stepin, “On spectral components of the Schrödinger operator with a complex potential”, Russian Math. Surveys, 68:1 (2013), 186–188 | DOI | DOI | MR | Zbl

[14] B. Simon, “Resonances in one dimension and Fredholm determinants”, J. Funct. Anal., 178:2 (2000), 396–420 | DOI | MR | Zbl

[15] W. V. Lovitt, Linear integral equations, McGraw-Hill Book Co., New York, 1924, 253 pp.

[16] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag, New York, 1966, xix+592 pp. | MR | MR | Zbl | Zbl

[17] M. V. Keldysh, “On the completeness of the eigenfunctions of some classes of non-selfadjoint linear operators”, Russian Math. Surveys, 26:4 (1971), 15–44 | DOI | MR | Zbl

[18] I. C. Gohberg, M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, R.I., 1969, xv+378 pp. | MR | MR | Zbl | Zbl

[19] M. V. Fedoryuk, Asimptotika: integraly i ryady, Nauka, M., 1987, 544 pp. | MR | Zbl