An estimate for the number of eigenvalues of the Schr\"odinger operator with a~complex potential
Sbornik. Mathematics, Tome 208 (2017) no. 2, pp. 269-284

Voir la notice de l'article provenant de la source Math-Net.Ru

For the Schrödinger operator whose potential is rapidly decreasing at infinity, an estimate for the number of eigenvalues is given, thus answering a question going back to Gelfand. The case of three-dimensional configuration space is chosen for simplicity of presentation; all the results formulated in the paper can be extended to an arbitrary number of degrees of freedom. Bibliography: 19 titles.
Keywords: Schrödinger operator, Fredholm determinant, total multiplicity of eigenvalues.
@article{SM_2017_208_2_a5,
     author = {S. A. Stepin},
     title = {An estimate for the number of eigenvalues of the {Schr\"odinger} operator with a~complex potential},
     journal = {Sbornik. Mathematics},
     pages = {269--284},
     publisher = {mathdoc},
     volume = {208},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_2_a5/}
}
TY  - JOUR
AU  - S. A. Stepin
TI  - An estimate for the number of eigenvalues of the Schr\"odinger operator with a~complex potential
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 269
EP  - 284
VL  - 208
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_2_a5/
LA  - en
ID  - SM_2017_208_2_a5
ER  - 
%0 Journal Article
%A S. A. Stepin
%T An estimate for the number of eigenvalues of the Schr\"odinger operator with a~complex potential
%J Sbornik. Mathematics
%D 2017
%P 269-284
%V 208
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2017_208_2_a5/
%G en
%F SM_2017_208_2_a5
S. A. Stepin. An estimate for the number of eigenvalues of the Schr\"odinger operator with a~complex potential. Sbornik. Mathematics, Tome 208 (2017) no. 2, pp. 269-284. http://geodesic.mathdoc.fr/item/SM_2017_208_2_a5/