An estimate for the number of eigenvalues of the Schr\"odinger operator with a~complex potential
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 208 (2017) no. 2, pp. 269-284
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For the Schrödinger operator whose potential is rapidly decreasing at infinity, an estimate for the number of eigenvalues is given, thus answering a question going back to Gelfand. The case of three-dimensional configuration space is chosen for simplicity of presentation; all the results formulated in the paper can be extended to an arbitrary number of degrees of freedom.
Bibliography: 19 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Schrödinger operator, Fredholm determinant, total multiplicity of eigenvalues.
                    
                    
                    
                  
                
                
                @article{SM_2017_208_2_a5,
     author = {S. A. Stepin},
     title = {An estimate for the number of eigenvalues of the {Schr\"odinger} operator with a~complex potential},
     journal = {Sbornik. Mathematics},
     pages = {269--284},
     publisher = {mathdoc},
     volume = {208},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_2_a5/}
}
                      
                      
                    TY - JOUR AU - S. A. Stepin TI - An estimate for the number of eigenvalues of the Schr\"odinger operator with a~complex potential JO - Sbornik. Mathematics PY - 2017 SP - 269 EP - 284 VL - 208 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2017_208_2_a5/ LA - en ID - SM_2017_208_2_a5 ER -
S. A. Stepin. An estimate for the number of eigenvalues of the Schr\"odinger operator with a~complex potential. Sbornik. Mathematics, Tome 208 (2017) no. 2, pp. 269-284. http://geodesic.mathdoc.fr/item/SM_2017_208_2_a5/
