@article{SM_2017_208_2_a1,
author = {I. V. Netay},
title = {Syzygies of quadratic {Veronese} embedding},
journal = {Sbornik. Mathematics},
pages = {200--222},
year = {2017},
volume = {208},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_2_a1/}
}
I. V. Netay. Syzygies of quadratic Veronese embedding. Sbornik. Mathematics, Tome 208 (2017) no. 2, pp. 200-222. http://geodesic.mathdoc.fr/item/SM_2017_208_2_a1/
[1] J. Harris, Algebraic geometry. A first course, Grad. Texts in Math., 133, Springer-Verlag, New York, 1992, xx+328 pp. | DOI | MR | Zbl
[2] D. Hilbert, “Über die Theorie der algebraischen Formen”, Gesammelte Abhandlungen, v. 2, 2 Aufl., Springer-Verlag, Berlin–New York, 1970, 199–257 | MR | Zbl
[3] D. Eisenbud, The geometry of syzygies, A second course in commutative algebra and algebraic geometry, Grad. Texts in Math., 229, Springer-Verlag, New York, 2005, xvi+243 pp. | DOI | MR | Zbl
[4] G. Ottaviani, R. Paoletti, “Syzygies of Veronese embeddings”, Compositio Math., 125:1 (2001), 31–37 ; arXiv: math/9811131 | DOI | MR | Zbl
[5] Thanh Vu, “$N_6$ property for third Veronese embedding”, Proc. Amer. Math. Soc., 143:5 (2015), 1897–1907 ; arXiv: 1303.5532v1 | DOI | MR | Zbl
[6] V. Reiner, J. Roberts, “Minimal resolutions and the homology of matching and chessboard complexes”, J. Algebraic Combin., 11:2 (2000), 135–154 | DOI | MR | Zbl
[7] J. E. Humphreys, Introduction to Lie algebras and representation theory, Grad. Texts in Math., 9, Springer-Verlag, New York–Berlin, 1972, xii+169 pp. | DOI | MR | Zbl
[8] T. Pecher, “Classification of skew multiplicity-free modules”, Transform. Groups, 17:1 (2012), 233–257 | DOI | MR | Zbl
[9] I. V. Netay, “Syzygy algebras for Segre embeddings”, Funct. Anal. Appl., 47:3 (2013), 210–226 | DOI | DOI | MR | Zbl
[10] S. I. Gelfand, Yu. I. Manin, “Homological algebra”, Algebra, V, Encyclopaedia Math. Sci., 38, Springer, Berlin, 1994, 1–222 | MR | MR | Zbl | Zbl
[11] G. Lancaster, J. Towber, “Representation-functors and flag-algebras for the classical groups. I”, J. Algebra, 59:1 (1979), 16–38 | DOI | MR | Zbl
[12] È. B. Vinberg, V. L. Popov, “On a class of quasihomogeneous affine varieties”, Math. USSR-Izv., 6:4 (1972), 743–758 | DOI | MR | Zbl
[13] W. Fulton, J. Harris, Representation theory. A first course, Grad. Texts in Math., 129, Springer-Verlag, New York, 1991, xvi+551 pp. | DOI | MR | Zbl
[14] W. Fulton, Young tableaux, With applications to representation theory and geometry, London Math. Soc. Stud. Texts, 35, Cambridge Univ. Press, Cambridge, 1997, x+260 pp. | MR | Zbl
[15] D. Mumford, Lectures on curves on an algebraic surface, Ann. of Math. Stud., 59, Princeton Univ. Press, Princeton, N.J., 1966, xi+200 pp. | MR | Zbl | Zbl
[16] I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Math. Monogr., 2nd ed., Oxford Univ. Press, New York, 1995, x+475 pp. | MR | MR | Zbl | Zbl
[17] A. Khare, “Representations of complex semi-simple Lie groups and Lie algebras”, Connected at infinity, v. II, Texts Read. Math., 67, Hindustan Book Agency, New Delhi, 2013, 85–129 ; arXiv: 1208.0416v2 | MR | Zbl
[18] E. B. Vinberg, A. L. Onischik, Seminar po gruppam Li i algebraicheskim gruppam, Nauka, M., 1988, 344 pp. | MR | Zbl
[19] R. Howe, “Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond”, The Schur lectures (Tel Aviv, 1992), Israel Math. Conf. Proc., 8, Bar-Ilan Univ., Ramat Gan, 1995, 1–182 | MR | Zbl
[20] T. Kobayashi, “Multiplicity-free representations and visible actions on complex manifolds”, Publ. Res. Inst. Math. Sci., 41:3 (2005), 497–549 | DOI | MR | Zbl