On eigenvalues of a $\mathscr{P\!T}$-symmetric operator in a thin layer
Sbornik. Mathematics, Tome 208 (2017) no. 2, pp. 173-199 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider an elliptic operator with variable coefficients in a thin three-dimensional layer with $\mathscr{P\!T}$-symmetric boundary conditions. We study the effect of the appearance of isolated eigenvalues at the edges of the gaps in the essential spectrum. We obtain sufficient conditions that guarantee that such eigenvalues either exist or are absent near a given edge of a gap. In the case of existence, the first terms in the asymptotic expansion of these emerging eigenvalues are calculated. Bibliography: 34 titles.
Keywords: thin domain, $\mathscr{P\!T}$-symmetric operator, edge of a gap, asymptotics, periodic operator.
@article{SM_2017_208_2_a0,
     author = {D. I. Borisov and M. Znojil},
     title = {On eigenvalues of a~$\mathscr{P\!T}$-symmetric operator in a~thin layer},
     journal = {Sbornik. Mathematics},
     pages = {173--199},
     year = {2017},
     volume = {208},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_2_a0/}
}
TY  - JOUR
AU  - D. I. Borisov
AU  - M. Znojil
TI  - On eigenvalues of a $\mathscr{P\!T}$-symmetric operator in a thin layer
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 173
EP  - 199
VL  - 208
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_2_a0/
LA  - en
ID  - SM_2017_208_2_a0
ER  - 
%0 Journal Article
%A D. I. Borisov
%A M. Znojil
%T On eigenvalues of a $\mathscr{P\!T}$-symmetric operator in a thin layer
%J Sbornik. Mathematics
%D 2017
%P 173-199
%V 208
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2017_208_2_a0/
%G en
%F SM_2017_208_2_a0
D. I. Borisov; M. Znojil. On eigenvalues of a $\mathscr{P\!T}$-symmetric operator in a thin layer. Sbornik. Mathematics, Tome 208 (2017) no. 2, pp. 173-199. http://geodesic.mathdoc.fr/item/SM_2017_208_2_a0/

[1] C. M. Bender, S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having $\mathscr{P\!T}$ symmetry”, Phys. Rev. Lett., 80:24 (1998), 5243–5246 | DOI | MR | Zbl

[2] A. Mostafazadeh, “Pseudo-Hermiticity versus $PT$ symmetry: the necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian”, J. Math. Phys., 43:1 (2002), 205–214 | DOI | MR | Zbl

[3] M. Znojil, “Exact solution for Morse oscillator in $\mathscr{P\!T}$ symmetric quantum mechanics”, Phys. Lett. A., 264:2-3 (1999), 108–111 | DOI | MR | Zbl

[4] C. M. Bender, “Making sense of non-Hermitian Hamiltionians”, Rep. Progr. Phys., 70:6 (2007), 947–1018 | DOI | MR

[5] M. Znojil, “$\mathscr{P\!T}$-symmetric harmonic oscillators”, Phys. Lett. A, 259:3-4 (1999), 220–223 | DOI | MR | Zbl

[6] G. Lévai, M. Znojil, “Systematic search for $\mathscr{P\!T}$-symmetric potentials with real energy spectra”, J. Phys. A, 33:40 (2000), 7165–7180 | DOI | MR | Zbl

[7] P. Dorey, C. Dunning, R. Tateo, “Spectral equivalences, Bethe ansatz equations, and reality properties in $\mathscr{P\!T}$-symmetric quantum mechanics”, J. Phys. A., 34:28 (2001), 5679–5704 | DOI | MR | Zbl

[8] H. Langer, Ch. Tretter, “A Krein space approach to $PT$-symmetry”, Czechoslovak J. Phys., 54:10 (2004), 1113–1120 | DOI | MR | Zbl

[9] K. C. Shin, “On the reality of the eigenvalues for a class of $\mathscr{P\!T}$-symmetric oscillators”, Comm. Math. Phys., 229:3 (2002), 543–564 | DOI | MR | Zbl

[10] E. Caliceti, S. Graffi, “Convergent quantum normal forms, $\mathscr{P\!T}$-symmetry and reality of the spectrum”, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 24:3 (2013), 385–407 | DOI | MR | Zbl

[11] Non-selfadjoint operators in quantum physics. Mathematical aspects, eds. F. Bagarello, J. P. Gazeau, F. H. Szafraniec, M. Znojil, John Wiley Sons, Inc., Hoboken, NJ, 2015, xxiv+407 pp. | DOI | MR | Zbl

[12] D. Krejčiřík, H. Bíla, M. Znojil, “Closed formula for the metric in the Hilbert space of a $\mathscr{P\!T}$-symmetric model”, J. Phys. A, 39:32 (2006), 10143–10153 | DOI | MR | Zbl

[13] D. Borisov, D. Krejčiřík, “$\mathscr{P\!T}$-symmetric waveguide”, Integral Equations Operator Theory, 62:4 (2008), 489–515 | DOI | MR | Zbl

[14] D. Borisov, D. Krejčiřík, “The effective Hamiltonian for thin layers with non-Hermitian Robin-type boundary conditions”, Asymptot. Anal., 76:1 (2012), 49–59 | MR | Zbl

[15] D. I. Borisov, “Discrete spectrum of thin $\mathscr{P\!T}$-symmetric waveguide”, Ufa Math. J., 6:1 (2014), 29–55 | DOI | MR

[16] D. I. Borisov, “The emergence of eigenvalues of a $\mathscr{P\!T}$-symmetric operator in a thin strip”, Math. Notes, 98:6 (2015), 872–883 | DOI | DOI | MR | Zbl

[17] S. A. Nazarov, Asimptoticheskii analiz tonkikh plastin i sterzhnei, v. 1, Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga (IDMI), Novosibirsk, 2002, 406 pp.

[18] G. Panasenko, Multi-scale modelling for structures and composites, Springer, Dordrecht, 2005, xiv+398 pp. | MR | Zbl

[19] G. P. Panasenko, E. Pérez, “Asymptotic partial decomposition of domain for spectral problems in rod structures”, J. Math. Pures Appl. (9), 87:1 (2007), 1–36 | DOI | MR | Zbl

[20] V. V. Belov, S. Yu. Dobrokhotov, T. Ya. Tudorovskii, “Asymptotic solutions of nonrelativistic equations of quantum mechanics in curved nanotubes. I. Reduction to spatially one-dimensional equations”, Theoret. and Math. Phys., 141:2 (2004), 1562–1592 | DOI | DOI | MR | Zbl

[21] V. V. Grushin, “Asymptotic behavior of eigenvalues of the Laplace operator in thin infinite tubes”, Math. Notes, 85:5 (2009), 661–673 | DOI | DOI | MR | Zbl

[22] V. V. Belov, S. Yu. Dobrokhotov, T. Ya. Tudorovskii, “Quantum and classical dynamics of an electron in thin curved tubes with spin and external electromagnetic fields taken into account”, Russ. J. Math. Phys., 11:1 (2004), 109–119 | MR | Zbl

[23] M. Klaus, B. Simon, “Coupling constant thresholds in nonrelativistic quantum mechanics. I. Short-range two-body case”, Ann. Physics, 130:2 (1980), 251–281 | DOI | MR | Zbl

[24] P. Exner, S. A. Vugalter, “Bound-state asymptotic estimates for window-coupled Dirichlet strips and layers”, J. Phys. A, 30:22 (1997), 7863–7878 | DOI | MR | Zbl

[25] P. Exner, S. A. Vugalter, “Asymptotic estimates for bound states in quantum waveguides coupled laterally through a narrow window”, Ann. Inst. H. Poincaré Phys. Théor., 65:1 (1996), 109–123 | MR | Zbl

[26] R. R. Gadyl'shin, “Local perturbations of the Schrödinger operator on the plane”, Theoret. and Math. Phys., 138:1 (2004), 33–44 | DOI | DOI | MR | Zbl

[27] D. I. Borisov, “On the spectrum of a two-dimensional periodic operator with a small localized perturbation”, Izv. Math., 75:3 (2011), 471–505 | DOI | DOI | MR | Zbl

[28] D. I. Borisov, “Vozmuschenie kraya suschestvennogo spektra volnovoda s oknom. I. Ubyvayuschie rezonansnye resheniya”, Problemy matem. analiza, 77, Tamara Rozhkovskaya, Novosibirsk, 2014, 19–54

[29] S. A. Nazarov, “Exfoliation of thin periodic elastic coating due to trapping and propagation of waves”, Materials Physics and Mechanics, 24:1 (2015), 50–60

[30] S. A. Nazarov, “Asimptotika sobstvennykh kolebanii tonkoi uprugoi prokladki mezhdu absolyutno zhestkimi profilyami”, PMM, 79:6 (2015), 824–838

[31] S. A. Nazarov, E. Pérez, J. Taskinen, “Localization effect for Dirichlet eigenfunctions in thin non-smooth domains”, Trans. Amer. Math. Soc., 368:7 (2016), 4787–4829 | DOI | MR | Zbl

[32] I. M. Glazman, Direct methods of qualitative spectral analysis of singular differential operators, Daniel Davey Co., Inc., New York, 1966, ix+234 pp. | MR | MR | Zbl | Zbl

[33] P. Kuchment, Floquet theory for partial differential equations, Oper. Theory Adv. Appl., 60, Birkhäuser Verlag, Basel, 1993, xiv+350 pp. | DOI | MR | Zbl

[34] M. Sh. Birman, T. A. Suslina, R. G. Shterenberg, “Absolute continuity of the spectrum of a two-dimensional Schrodinger operator with potential supported on a periodic system of curves”, St. Petersburg Math. J., 12:6 (2001), 983–1012 | MR | Zbl