@article{SM_2017_208_2_a0,
author = {D. I. Borisov and M. Znojil},
title = {On eigenvalues of a~$\mathscr{P\!T}$-symmetric operator in a~thin layer},
journal = {Sbornik. Mathematics},
pages = {173--199},
year = {2017},
volume = {208},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_2_a0/}
}
D. I. Borisov; M. Znojil. On eigenvalues of a $\mathscr{P\!T}$-symmetric operator in a thin layer. Sbornik. Mathematics, Tome 208 (2017) no. 2, pp. 173-199. http://geodesic.mathdoc.fr/item/SM_2017_208_2_a0/
[1] C. M. Bender, S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having $\mathscr{P\!T}$ symmetry”, Phys. Rev. Lett., 80:24 (1998), 5243–5246 | DOI | MR | Zbl
[2] A. Mostafazadeh, “Pseudo-Hermiticity versus $PT$ symmetry: the necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian”, J. Math. Phys., 43:1 (2002), 205–214 | DOI | MR | Zbl
[3] M. Znojil, “Exact solution for Morse oscillator in $\mathscr{P\!T}$ symmetric quantum mechanics”, Phys. Lett. A., 264:2-3 (1999), 108–111 | DOI | MR | Zbl
[4] C. M. Bender, “Making sense of non-Hermitian Hamiltionians”, Rep. Progr. Phys., 70:6 (2007), 947–1018 | DOI | MR
[5] M. Znojil, “$\mathscr{P\!T}$-symmetric harmonic oscillators”, Phys. Lett. A, 259:3-4 (1999), 220–223 | DOI | MR | Zbl
[6] G. Lévai, M. Znojil, “Systematic search for $\mathscr{P\!T}$-symmetric potentials with real energy spectra”, J. Phys. A, 33:40 (2000), 7165–7180 | DOI | MR | Zbl
[7] P. Dorey, C. Dunning, R. Tateo, “Spectral equivalences, Bethe ansatz equations, and reality properties in $\mathscr{P\!T}$-symmetric quantum mechanics”, J. Phys. A., 34:28 (2001), 5679–5704 | DOI | MR | Zbl
[8] H. Langer, Ch. Tretter, “A Krein space approach to $PT$-symmetry”, Czechoslovak J. Phys., 54:10 (2004), 1113–1120 | DOI | MR | Zbl
[9] K. C. Shin, “On the reality of the eigenvalues for a class of $\mathscr{P\!T}$-symmetric oscillators”, Comm. Math. Phys., 229:3 (2002), 543–564 | DOI | MR | Zbl
[10] E. Caliceti, S. Graffi, “Convergent quantum normal forms, $\mathscr{P\!T}$-symmetry and reality of the spectrum”, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 24:3 (2013), 385–407 | DOI | MR | Zbl
[11] Non-selfadjoint operators in quantum physics. Mathematical aspects, eds. F. Bagarello, J. P. Gazeau, F. H. Szafraniec, M. Znojil, John Wiley Sons, Inc., Hoboken, NJ, 2015, xxiv+407 pp. | DOI | MR | Zbl
[12] D. Krejčiřík, H. Bíla, M. Znojil, “Closed formula for the metric in the Hilbert space of a $\mathscr{P\!T}$-symmetric model”, J. Phys. A, 39:32 (2006), 10143–10153 | DOI | MR | Zbl
[13] D. Borisov, D. Krejčiřík, “$\mathscr{P\!T}$-symmetric waveguide”, Integral Equations Operator Theory, 62:4 (2008), 489–515 | DOI | MR | Zbl
[14] D. Borisov, D. Krejčiřík, “The effective Hamiltonian for thin layers with non-Hermitian Robin-type boundary conditions”, Asymptot. Anal., 76:1 (2012), 49–59 | MR | Zbl
[15] D. I. Borisov, “Discrete spectrum of thin $\mathscr{P\!T}$-symmetric waveguide”, Ufa Math. J., 6:1 (2014), 29–55 | DOI | MR
[16] D. I. Borisov, “The emergence of eigenvalues of a $\mathscr{P\!T}$-symmetric operator in a thin strip”, Math. Notes, 98:6 (2015), 872–883 | DOI | DOI | MR | Zbl
[17] S. A. Nazarov, Asimptoticheskii analiz tonkikh plastin i sterzhnei, v. 1, Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga (IDMI), Novosibirsk, 2002, 406 pp.
[18] G. Panasenko, Multi-scale modelling for structures and composites, Springer, Dordrecht, 2005, xiv+398 pp. | MR | Zbl
[19] G. P. Panasenko, E. Pérez, “Asymptotic partial decomposition of domain for spectral problems in rod structures”, J. Math. Pures Appl. (9), 87:1 (2007), 1–36 | DOI | MR | Zbl
[20] V. V. Belov, S. Yu. Dobrokhotov, T. Ya. Tudorovskii, “Asymptotic solutions of nonrelativistic equations of quantum mechanics in curved nanotubes. I. Reduction to spatially one-dimensional equations”, Theoret. and Math. Phys., 141:2 (2004), 1562–1592 | DOI | DOI | MR | Zbl
[21] V. V. Grushin, “Asymptotic behavior of eigenvalues of the Laplace operator in thin infinite tubes”, Math. Notes, 85:5 (2009), 661–673 | DOI | DOI | MR | Zbl
[22] V. V. Belov, S. Yu. Dobrokhotov, T. Ya. Tudorovskii, “Quantum and classical dynamics of an electron in thin curved tubes with spin and external electromagnetic fields taken into account”, Russ. J. Math. Phys., 11:1 (2004), 109–119 | MR | Zbl
[23] M. Klaus, B. Simon, “Coupling constant thresholds in nonrelativistic quantum mechanics. I. Short-range two-body case”, Ann. Physics, 130:2 (1980), 251–281 | DOI | MR | Zbl
[24] P. Exner, S. A. Vugalter, “Bound-state asymptotic estimates for window-coupled Dirichlet strips and layers”, J. Phys. A, 30:22 (1997), 7863–7878 | DOI | MR | Zbl
[25] P. Exner, S. A. Vugalter, “Asymptotic estimates for bound states in quantum waveguides coupled laterally through a narrow window”, Ann. Inst. H. Poincaré Phys. Théor., 65:1 (1996), 109–123 | MR | Zbl
[26] R. R. Gadyl'shin, “Local perturbations of the Schrödinger operator on the plane”, Theoret. and Math. Phys., 138:1 (2004), 33–44 | DOI | DOI | MR | Zbl
[27] D. I. Borisov, “On the spectrum of a two-dimensional periodic operator with a small localized perturbation”, Izv. Math., 75:3 (2011), 471–505 | DOI | DOI | MR | Zbl
[28] D. I. Borisov, “Vozmuschenie kraya suschestvennogo spektra volnovoda s oknom. I. Ubyvayuschie rezonansnye resheniya”, Problemy matem. analiza, 77, Tamara Rozhkovskaya, Novosibirsk, 2014, 19–54
[29] S. A. Nazarov, “Exfoliation of thin periodic elastic coating due to trapping and propagation of waves”, Materials Physics and Mechanics, 24:1 (2015), 50–60
[30] S. A. Nazarov, “Asimptotika sobstvennykh kolebanii tonkoi uprugoi prokladki mezhdu absolyutno zhestkimi profilyami”, PMM, 79:6 (2015), 824–838
[31] S. A. Nazarov, E. Pérez, J. Taskinen, “Localization effect for Dirichlet eigenfunctions in thin non-smooth domains”, Trans. Amer. Math. Soc., 368:7 (2016), 4787–4829 | DOI | MR | Zbl
[32] I. M. Glazman, Direct methods of qualitative spectral analysis of singular differential operators, Daniel Davey Co., Inc., New York, 1966, ix+234 pp. | MR | MR | Zbl | Zbl
[33] P. Kuchment, Floquet theory for partial differential equations, Oper. Theory Adv. Appl., 60, Birkhäuser Verlag, Basel, 1993, xiv+350 pp. | DOI | MR | Zbl
[34] M. Sh. Birman, T. A. Suslina, R. G. Shterenberg, “Absolute continuity of the spectrum of a two-dimensional Schrodinger operator with potential supported on a periodic system of curves”, St. Petersburg Math. J., 12:6 (2001), 983–1012 | MR | Zbl