Existence of two nontrivial solutions for sufficiently large values of the spectral parameter in eigenvalue problems for equations with discontinuous right-hand sides
Sbornik. Mathematics, Tome 208 (2017) no. 1, pp. 157-172 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The question on the existence of solutions to eigenvalue problems is treated for nonlinear equations with discontinuous operators in a real Hilbert space. Using a variational method, theorems on the existence of two nontrivial solutions for sufficiently large values of the spectral parameter are proved. As an application, eigenvalue problems for elliptic-type equations with nonlinear terms which are discontinuous in the phase variable are investigated. Bibliography: 22 titles.
Keywords: eigenvalue problems, discontinuous right-hand side, variational method, nontrivial solution.
@article{SM_2017_208_1_a6,
     author = {V. N. Pavlenko and D. K. Potapov},
     title = {Existence of two nontrivial solutions for sufficiently large values of the spectral parameter in eigenvalue problems for equations with discontinuous right-hand sides},
     journal = {Sbornik. Mathematics},
     pages = {157--172},
     year = {2017},
     volume = {208},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_1_a6/}
}
TY  - JOUR
AU  - V. N. Pavlenko
AU  - D. K. Potapov
TI  - Existence of two nontrivial solutions for sufficiently large values of the spectral parameter in eigenvalue problems for equations with discontinuous right-hand sides
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 157
EP  - 172
VL  - 208
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_1_a6/
LA  - en
ID  - SM_2017_208_1_a6
ER  - 
%0 Journal Article
%A V. N. Pavlenko
%A D. K. Potapov
%T Existence of two nontrivial solutions for sufficiently large values of the spectral parameter in eigenvalue problems for equations with discontinuous right-hand sides
%J Sbornik. Mathematics
%D 2017
%P 157-172
%V 208
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2017_208_1_a6/
%G en
%F SM_2017_208_1_a6
V. N. Pavlenko; D. K. Potapov. Existence of two nontrivial solutions for sufficiently large values of the spectral parameter in eigenvalue problems for equations with discontinuous right-hand sides. Sbornik. Mathematics, Tome 208 (2017) no. 1, pp. 157-172. http://geodesic.mathdoc.fr/item/SM_2017_208_1_a6/

[1] M. S. Agranovich, “Spectral problems in Lipschitz domains”, J. Math. Sci. (N. Y.), 190:1 (2013), 8–33 | DOI | MR | Zbl

[2] H. Chrayteh, J. M. Rakotoson, “Eigenvalue problems with fully discontinuous operators and critical exponents”, Nonlinear Anal., 73:7 (2010), 2036–2055 | DOI | MR | Zbl

[3] V. N. Pavlenko, D. K. Potapov, “Existence of a ray of eigenvalues for equations with discontinuous operators”, Siberian Math. J., 42:4 (2001), 766–773 | DOI | MR | Zbl

[4] D. K. Potapov, “Spectral problems for equations with discontinuous monotone operators”, J. Math. Sci. (N. Y.), 144:4 (2007), 4232–4233 | DOI | MR | Zbl

[5] D. K. Potapov, “Spectral problems for variational inequalities with discontinuous operators”, Math. Notes, 93:2 (2013), 288–296 | DOI | DOI | MR | Zbl

[6] S. A. Marano, D. Motreanu, “On a three critical points theorem for non-differentiable functions and applications to nonlinear boundary value problems”, Nonlinear Anal., 48:1 (2002), 37–52 | DOI | MR | Zbl

[7] G. Bonanno, P. Candito, “Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities”, J. Differential Equations, 244:12 (2008), 3031–3059 | DOI | MR | Zbl

[8] Chengfu Wang, Yisheng Huang, “Multiple solutions for a class of quasilinear elliptic problems with discontinuous nonlinearities and weights”, Nonlinear Anal., 72:11 (2010), 4076–4081 | DOI | MR | Zbl

[9] D. K. Potapov, “On the eigenvalue set structure for higher-order equations of elliptic type with discontinuous nonlinearities”, Differ. Equ., 46:1 (2010), 155–157 | DOI | MR | Zbl

[10] D. K. Potapov, “On the number of semiregular solutions in problems with spectral parameter for higher-order equations of elliptic type with discontinuous nonlinearities”, Differ. Equ., 48:3 (2012), 455–457 | DOI | Zbl

[11] M. M. Vaĭnberg, Variational method and method of monotone operators in the theory of nonlinear equations, Halsted Press (A division of John Wiley Sons), New York–Toronto, Ont.; Israel Program for Scientific Translations, Jerusalem–London, 1973, xi+356 pp. | MR | MR | Zbl | Zbl

[12] V. N. Pavlenko, “Existence of semiregular solutions of a first boundary-value problem for a parabolic equation with a nonmonotonic discontinuous nonlinearity”, Differ. Equ., 27:3 (1991), 374–379 | MR | Zbl

[13] L. Gasiński, N. S. Papageorgiou, Nonsmooth critical point theory and nonlinear boundary value problems, Ser. Math. Anal. Appl., 8, Chapman Hall/CRC, Boca Raton, FL, 2005, xiv+775 pp. | MR | Zbl

[14] Kung-Ching Chang, “Variational methods for non-differentiable functionals and their applications to partial differential equations”, J. Math. Anal. Appl., 80:1 (1981), 102–129 | DOI | MR | Zbl

[15] B. N. Pavlenko, Variatsionnyi metod dlya uravnenii s razryvnymi operatorami, Chelyab. gos. un-t, Chelyabinsk, 1997, 75 pp.

[16] M. A. Krasnosel'skiĭ, A. V. Pokrovskiĭ, Systems with hysteresis, Springer-Verlag, Berlin, 1989, xviii+410 pp. | DOI | MR | MR | Zbl | Zbl

[17] V. N. Pavlenko, “Existence theorems for elliptic variational inequalities with quasipotential operators”, Differ. Equ., 24:8 (1988), 913–916 | MR | Zbl

[18] S. Agmon, A. Douglis, L. Nirenberg, “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I”, Comm. Pure Appl. Math., 12:4 (1959), 623–727 | DOI | MR | Zbl | Zbl

[19] V. N. Pavlenko, “Control of singular distributed parabolic systems with discontinuous nonlinearities”, Ukrainian Math. J., 46:6 (1994), 790–798 | DOI | MR | Zbl

[20] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, 2nd ed., Springer-Verlag, Berlin, 1983, xiii+513 pp. | DOI | MR | MR | Zbl | Zbl

[21] M. A. Krasnosel'skiĭ, A. V. Pokrovskiĭ, “Regular solutions of equations with discontinuous nonlinearities”, Soviet Math. Dokl., 17 (1976), 128–132 | MR | Zbl

[22] V. N. Pavlenko, V. V. Vinokur, “Resonance boundary value problems for elliptic equations with discontinuous nonlinearities”, Russian Math. (Iz. VUZ), 45:5 (2001), 40–55 | MR | Zbl