@article{SM_2017_208_1_a6,
author = {V. N. Pavlenko and D. K. Potapov},
title = {Existence of two nontrivial solutions for sufficiently large values of the spectral parameter in eigenvalue problems for equations with discontinuous right-hand sides},
journal = {Sbornik. Mathematics},
pages = {157--172},
year = {2017},
volume = {208},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_1_a6/}
}
TY - JOUR AU - V. N. Pavlenko AU - D. K. Potapov TI - Existence of two nontrivial solutions for sufficiently large values of the spectral parameter in eigenvalue problems for equations with discontinuous right-hand sides JO - Sbornik. Mathematics PY - 2017 SP - 157 EP - 172 VL - 208 IS - 1 UR - http://geodesic.mathdoc.fr/item/SM_2017_208_1_a6/ LA - en ID - SM_2017_208_1_a6 ER -
%0 Journal Article %A V. N. Pavlenko %A D. K. Potapov %T Existence of two nontrivial solutions for sufficiently large values of the spectral parameter in eigenvalue problems for equations with discontinuous right-hand sides %J Sbornik. Mathematics %D 2017 %P 157-172 %V 208 %N 1 %U http://geodesic.mathdoc.fr/item/SM_2017_208_1_a6/ %G en %F SM_2017_208_1_a6
V. N. Pavlenko; D. K. Potapov. Existence of two nontrivial solutions for sufficiently large values of the spectral parameter in eigenvalue problems for equations with discontinuous right-hand sides. Sbornik. Mathematics, Tome 208 (2017) no. 1, pp. 157-172. http://geodesic.mathdoc.fr/item/SM_2017_208_1_a6/
[1] M. S. Agranovich, “Spectral problems in Lipschitz domains”, J. Math. Sci. (N. Y.), 190:1 (2013), 8–33 | DOI | MR | Zbl
[2] H. Chrayteh, J. M. Rakotoson, “Eigenvalue problems with fully discontinuous operators and critical exponents”, Nonlinear Anal., 73:7 (2010), 2036–2055 | DOI | MR | Zbl
[3] V. N. Pavlenko, D. K. Potapov, “Existence of a ray of eigenvalues for equations with discontinuous operators”, Siberian Math. J., 42:4 (2001), 766–773 | DOI | MR | Zbl
[4] D. K. Potapov, “Spectral problems for equations with discontinuous monotone operators”, J. Math. Sci. (N. Y.), 144:4 (2007), 4232–4233 | DOI | MR | Zbl
[5] D. K. Potapov, “Spectral problems for variational inequalities with discontinuous operators”, Math. Notes, 93:2 (2013), 288–296 | DOI | DOI | MR | Zbl
[6] S. A. Marano, D. Motreanu, “On a three critical points theorem for non-differentiable functions and applications to nonlinear boundary value problems”, Nonlinear Anal., 48:1 (2002), 37–52 | DOI | MR | Zbl
[7] G. Bonanno, P. Candito, “Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities”, J. Differential Equations, 244:12 (2008), 3031–3059 | DOI | MR | Zbl
[8] Chengfu Wang, Yisheng Huang, “Multiple solutions for a class of quasilinear elliptic problems with discontinuous nonlinearities and weights”, Nonlinear Anal., 72:11 (2010), 4076–4081 | DOI | MR | Zbl
[9] D. K. Potapov, “On the eigenvalue set structure for higher-order equations of elliptic type with discontinuous nonlinearities”, Differ. Equ., 46:1 (2010), 155–157 | DOI | MR | Zbl
[10] D. K. Potapov, “On the number of semiregular solutions in problems with spectral parameter for higher-order equations of elliptic type with discontinuous nonlinearities”, Differ. Equ., 48:3 (2012), 455–457 | DOI | Zbl
[11] M. M. Vaĭnberg, Variational method and method of monotone operators in the theory of nonlinear equations, Halsted Press (A division of John Wiley Sons), New York–Toronto, Ont.; Israel Program for Scientific Translations, Jerusalem–London, 1973, xi+356 pp. | MR | MR | Zbl | Zbl
[12] V. N. Pavlenko, “Existence of semiregular solutions of a first boundary-value problem for a parabolic equation with a nonmonotonic discontinuous nonlinearity”, Differ. Equ., 27:3 (1991), 374–379 | MR | Zbl
[13] L. Gasiński, N. S. Papageorgiou, Nonsmooth critical point theory and nonlinear boundary value problems, Ser. Math. Anal. Appl., 8, Chapman Hall/CRC, Boca Raton, FL, 2005, xiv+775 pp. | MR | Zbl
[14] Kung-Ching Chang, “Variational methods for non-differentiable functionals and their applications to partial differential equations”, J. Math. Anal. Appl., 80:1 (1981), 102–129 | DOI | MR | Zbl
[15] B. N. Pavlenko, Variatsionnyi metod dlya uravnenii s razryvnymi operatorami, Chelyab. gos. un-t, Chelyabinsk, 1997, 75 pp.
[16] M. A. Krasnosel'skiĭ, A. V. Pokrovskiĭ, Systems with hysteresis, Springer-Verlag, Berlin, 1989, xviii+410 pp. | DOI | MR | MR | Zbl | Zbl
[17] V. N. Pavlenko, “Existence theorems for elliptic variational inequalities with quasipotential operators”, Differ. Equ., 24:8 (1988), 913–916 | MR | Zbl
[18] S. Agmon, A. Douglis, L. Nirenberg, “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I”, Comm. Pure Appl. Math., 12:4 (1959), 623–727 | DOI | MR | Zbl | Zbl
[19] V. N. Pavlenko, “Control of singular distributed parabolic systems with discontinuous nonlinearities”, Ukrainian Math. J., 46:6 (1994), 790–798 | DOI | MR | Zbl
[20] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, 2nd ed., Springer-Verlag, Berlin, 1983, xiii+513 pp. | DOI | MR | MR | Zbl | Zbl
[21] M. A. Krasnosel'skiĭ, A. V. Pokrovskiĭ, “Regular solutions of equations with discontinuous nonlinearities”, Soviet Math. Dokl., 17 (1976), 128–132 | MR | Zbl
[22] V. N. Pavlenko, V. V. Vinokur, “Resonance boundary value problems for elliptic equations with discontinuous nonlinearities”, Russian Math. (Iz. VUZ), 45:5 (2001), 40–55 | MR | Zbl