The asymptotic behaviour of the scattering matrix in a neighbourhood of the endpoints of a spectral gap
Sbornik. Mathematics, Tome 208 (2017) no. 1, pp. 103-156 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The behaviour of the scattering matrix is investigated as the spectral parameter approaches an endpoint of a spectral gap of a quantum waveguide from the inside or the outside. The waveguide has two sleeves, one is cylindrical and the other periodic. When the spectral parameter traverses the spectral gap, the scattering matrix is reshaped because the number of waves inside and outside the gap is different. Notwithstanding, the smaller scattering matrix (in size) is transformed continuously into an identical block in the bigger scattering matrix and, in addition, the latter takes block diagonal form in the limit at the endpoint of the gap, that is, at the spectral threshold. The unexpected phenomena are related to the other block. It is shown that in the limit this block can only take certain values at the threshold, and taking one or other of these values depends on the structure of the continuous spectrum and also on the structure of the subspace of ‘almost standing’ waves at the threshold, which are solutions of the homogeneous problem that transfer no energy to infinity. A criterion for the existence of such solutions links the dimension of this subspace to the multiplicity of the eigenvalue $-1$ of the threshold scattering matrix. Asymptotic formulae are obtained, which show, in particular, that the phenomenon of anomalous scattering of high-amplitude waves at near-threshold frequencies, discovered by Weinstein in a special acoustic problem, also occurs in periodic waveguides. Bibliography: 38 titles.
Keywords: junction of a cylindrical and a periodic waveguide, spectrum, threshold, gap, scattering matrix, asymptotic behaviour.
@article{SM_2017_208_1_a5,
     author = {S. A. Nazarov},
     title = {The asymptotic behaviour of the scattering matrix in a~neighbourhood of the endpoints of a~spectral gap},
     journal = {Sbornik. Mathematics},
     pages = {103--156},
     year = {2017},
     volume = {208},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_1_a5/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - The asymptotic behaviour of the scattering matrix in a neighbourhood of the endpoints of a spectral gap
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 103
EP  - 156
VL  - 208
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_1_a5/
LA  - en
ID  - SM_2017_208_1_a5
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T The asymptotic behaviour of the scattering matrix in a neighbourhood of the endpoints of a spectral gap
%J Sbornik. Mathematics
%D 2017
%P 103-156
%V 208
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2017_208_1_a5/
%G en
%F SM_2017_208_1_a5
S. A. Nazarov. The asymptotic behaviour of the scattering matrix in a neighbourhood of the endpoints of a spectral gap. Sbornik. Mathematics, Tome 208 (2017) no. 1, pp. 103-156. http://geodesic.mathdoc.fr/item/SM_2017_208_1_a5/

[1] V. A. Kondrat'ev, “Boundary problems for elliptic equations in domains with conical or angular points”, Trans. Moscow Math. Soc., 16, Amer. Math. Soc., Providence, RI, 1967, 227–313 | MR | Zbl

[2] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, de Gruyter Exp. Math., 13, Walter de Gruyter Co., Berlin, 1994, viii+525 pp. | DOI | MR | Zbl

[3] A. V. Sobolev, J. Walthoe, “Absolute continuity in periodic waveguides”, Proc. London Math. Soc. (3), 85:3 (2002), 717–741 | DOI | MR | Zbl

[4] T. A. Suslina, R. G. Shterenberg, “Absolute continuity of the spectrum of the magnetic Schrödinger operator with a metric in a two-dimensional periodic waveguide”, St. Petersburg Math. J., 14:2 (2003), 305–343 | MR | Zbl

[5] I. Kachkovskii, N. Filonov, “Absolute continuity of the spectrum of a periodic Schrödinger operator in a multidimensional cylinder”, St. Petersburg Math. J., 21:1 (2010), 95–109 | DOI | MR | Zbl

[6] S. Nazarov, “Properties of spectra of boundary value problems in cylindrical and quasicylindrical domains”, Sobolev spaces in mathematics, v. II, Int. Math. Ser. (N. Y.), 9, Springer, New York, 2008, 261–309 | DOI | MR | Zbl

[7] S. A. Nazarov, “Elliptic boundary value problems with periodic coefficients in a cylinder”, Izv. Akad. Nauk SSSR Ser. Mat., 18:1 (1982), 89–98 | DOI | MR | Zbl

[8] P. A. Kuchment, “Floquet theory for partial differential equations”, Russian Math. Surveys, 37:4 (1982), 1–60 | DOI | MR | Zbl

[9] P. Kuchment, Floquet theory for partial differential equations, Oper. Theory Adv. Appl., 60, Birchäuser Verlag, Basel, 1993, xiv+350 pp. | DOI | MR | Zbl

[10] S. A. Nazarov, B. A. Plamenevskiĭ, “On radiation conditions for selfadjoint elliptic problems”, Soviet Math. Dokl., 41:2 (1990), 274–277 | MR | Zbl

[11] S. A. Nazarov, B. A. Plamenevskii, “Printsipy izlucheniya dlya samosopryazhennykh ellipticheskikh zadach”, Differentsialnye uravneniya. Spektralnaya teoriya. Raspoznavanie voln, Problemy matem. fiziki, 13, Izd-vo Leningr. un-ta, L., 1991, 192–244 | MR | Zbl

[12] S. A. Nazarov, “Umov–Mandelshtam radiation conditions in elastic periodic waveguides”, Sb. Math., 205:7 (2014), 953–982 | DOI | DOI | MR | Zbl

[13] N. A. Umov, Uravneniya dvizheniya energii v telakh, Tip. Ulrikha i Shultse, Odessa, 1874, 58 pp.

[14] J. H. Poynting, “On the transfer of energy in the electromagnetic field”, Philos. Trans. R. Soc. Lond., 175 (1884), 343–361 | DOI | Zbl

[15] I. I. Vorovich, V. A. Babeshko, Dinamicheskie smeshannye zadachi teorii uprugosti dlya neklassicheskikh oblastei, Nauka, M., 1979, 320 pp. | MR | Zbl

[16] S. A. Nazarov, “The Mandelstam energy radiation conditions and the Umov–Poynting vector in elastic waveguides”, J. Math. Sci. (N. Y.), 195:5 (2013), 676–729 | DOI | MR | Zbl

[17] S. Fliss, P. Joly, “Solutions of the time-harmonic wave equation in periodic waveguides: asymptotic behaviour and radiation condition”, Arch. Ration. Mech. Anal., 219:1 (2016), 349–386 | DOI | MR | Zbl

[18] L. I. Mandelshtam, Lektsii po optike teorii otnositelnosti i kvantovoi mekhanike, Sb. trudov, v. 2, Izd-vo AN SSSR, M., 1947, 372 pp. | MR

[19] S. A. Nazarov, “Asymptotic expansions of eigenvalues in the continuous spectrum of a regularly perturbed quantum waveguide”, Theoret. and Math. Phys., 167:2 (2011), 606–627 | DOI | DOI | MR | Zbl

[20] S. A. Nazarov, “Trapped surface waves in a periodic layer of a heavy liquid”, J. Appl. Math. Mech., 75:2 (2011), 235–244 | DOI | MR | Zbl

[21] S. A. Nazarov, “Localized elastic fields in periodic waveguides with defects”, J. Appl. Mech. Tech. Phys., 52:2 (2011), 311–320 | DOI | MR | Zbl

[22] S. A. Nazarov, “Gaps and eigenfrequencies in the spectrum of a periodic acoustic waveguide”, Acoust. Phys., 59:3 (2013), 272–280 | DOI | DOI

[23] B. A. Plamenevskiĭ, A. S. Poretskiĭ, O. V. Sarafanov, “Method for computing waveguide scattering matrices in the vicinity of thresholds”, St. Petersburg Math. J., 26:1 (2015), 91–116 | DOI | MR | Zbl

[24] B. A. Plamenevskii, A. S. Poretskii, O. V. Sarafanov, “On computation of waveguide scattering matrices for the Maxwell system”, Funct. Anal. Appl., 49:1 (2015), 77–80 | DOI | DOI | Zbl

[25] C. A. Nazarov, “Okoloporogovye effekty rasseyaniya voln v iskrivlennom uprugom dvumernom volnovode”, PMM, 79:4 (2015), 530–549

[26] S. A. Nazarov, “Scattering anomalies in a resonator above the thresholds of the continuous spectrum”, Sb. Math., 206:6 (2015), 782–813 | DOI | DOI | MR | Zbl

[27] L. A. Vainshtein, Teoriya difraktsii i metod faktorizatsii, Sov. radio, M., 1966, 431 pp.

[28] S. A. Nazarov, “Variational and asymptotic methods for finding eigenvalues below the continuous spectrum threshold”, Siberian Math. J., 51:5 (2010), 866–878 | DOI | MR | Zbl

[29] S. A. Nazarov, “Enforced stability of a simple eigenvalue in the continuous spectrum of a waveguide”, Funct. Anal. Appl., 47:3 (2013), 195–209 | DOI | DOI | MR | Zbl

[30] I. C. Gohberg, M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, RI, 1969, xv+378 pp. | MR | MR | Zbl | Zbl

[31] I. C. Gohberg, E. I. Sigal, “An operator generalization of the logarithmic residue theorem and the theorem of Rouché”, Math. USSR-Sb., 13:4 (1971), 603–625 | DOI | MR | Zbl

[32] V. G. Maz'ya, B. A. Plamenevskij, “On the coefficients in the asymptotics of solutions of elliptic boundary value problems in domains with conical points”, Amer. Math. Soc. Transl. Ser. 2, 123, Amer. Math. Soc., Providence, RI, 1984, 57–88 | DOI | MR | Zbl

[33] M. M. Vainberg, V. A. Trenogin, Theory of branching of solutions of non-linear equations, Monogr. Textbooks Pure Appl. Math., Noordhoff International Publishing, Leyden, 1974, xxvi+485 pp. | MR | MR | Zbl | Zbl

[34] S. A. Nazarov, “The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes”, Rus. Math. Surv., 54:5 (1999), 947–1014 | DOI | DOI | MR | Zbl

[35] M. van Dyke, Perturbation methods in fluid mechanics, Appl. Math. Mech., 8, Academic Press, New York–London, 1964, x+229 pp. | MR | Zbl | Zbl

[36] A. M. Il'in, Matching of asymptotic expansions of solutions of boundary value problems, Transl. Math. Monogr., 102, Amer. Math. Soc., Providence, RI, 1992, x+281 pp. | MR | MR | Zbl | Zbl

[37] D. S. Jones, “The eigenvalues of $\nabla^2u+\lambda u=0$ when the boundary conditions are given on semi-infinite domains”, Proc. Cambridge Philos. Soc., 49:4 (1953), 668–684 | DOI | MR | Zbl

[38] A. Aslanyan, L. Parnovski, D. Vassiliev, “Complex resonances in acoustic waveguides”, Quart. J. Mech. Appl. Math., 53:3 (2000), 429–447 | DOI | MR | Zbl