Lattice definability of certain matrix rings
Sbornik. Mathematics, Tome 208 (2017) no. 1, pp. 90-102

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R=M_n(K)$ be the ring of square matrices of order $n\geqslant 2$ over the ring $K= \mathbb{Z}/p^k\mathbb{Z}$, where $p$ is a prime number, $k\in\mathbb{N}$. Let $R'$ be an arbitrary associative ring. It is proved that the subring lattices of the rings $R$ and $R'$ are isomorphic if and only if the rings $R$ and $R'$ are themselves isomorphic. In other words, the lattice definability of the matrix ring $M_n(K)$ in the class of all associative rings is proved. The lattice definability of a ring decomposable into a direct (ring) sum of matrix rings is also proved. The results obtained are important for the study of lattice isomorphisms of finite rings. Bibliography: 13 titles.
Keywords: lattice isomorphisms of associative rings, matrix rings, Galois rings.
@article{SM_2017_208_1_a4,
     author = {S. S. Korobkov},
     title = {Lattice definability of certain matrix rings},
     journal = {Sbornik. Mathematics},
     pages = {90--102},
     publisher = {mathdoc},
     volume = {208},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_1_a4/}
}
TY  - JOUR
AU  - S. S. Korobkov
TI  - Lattice definability of certain matrix rings
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 90
EP  - 102
VL  - 208
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_1_a4/
LA  - en
ID  - SM_2017_208_1_a4
ER  - 
%0 Journal Article
%A S. S. Korobkov
%T Lattice definability of certain matrix rings
%J Sbornik. Mathematics
%D 2017
%P 90-102
%V 208
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2017_208_1_a4/
%G en
%F SM_2017_208_1_a4
S. S. Korobkov. Lattice definability of certain matrix rings. Sbornik. Mathematics, Tome 208 (2017) no. 1, pp. 90-102. http://geodesic.mathdoc.fr/item/SM_2017_208_1_a4/