Lattice definability of certain matrix rings
Sbornik. Mathematics, Tome 208 (2017) no. 1, pp. 90-102 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $R=M_n(K)$ be the ring of square matrices of order $n\geqslant 2$ over the ring $K= \mathbb{Z}/p^k\mathbb{Z}$, where $p$ is a prime number, $k\in\mathbb{N}$. Let $R'$ be an arbitrary associative ring. It is proved that the subring lattices of the rings $R$ and $R'$ are isomorphic if and only if the rings $R$ and $R'$ are themselves isomorphic. In other words, the lattice definability of the matrix ring $M_n(K)$ in the class of all associative rings is proved. The lattice definability of a ring decomposable into a direct (ring) sum of matrix rings is also proved. The results obtained are important for the study of lattice isomorphisms of finite rings. Bibliography: 13 titles.
Keywords: lattice isomorphisms of associative rings, matrix rings, Galois rings.
@article{SM_2017_208_1_a4,
     author = {S. S. Korobkov},
     title = {Lattice definability of certain matrix rings},
     journal = {Sbornik. Mathematics},
     pages = {90--102},
     year = {2017},
     volume = {208},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_1_a4/}
}
TY  - JOUR
AU  - S. S. Korobkov
TI  - Lattice definability of certain matrix rings
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 90
EP  - 102
VL  - 208
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_1_a4/
LA  - en
ID  - SM_2017_208_1_a4
ER  - 
%0 Journal Article
%A S. S. Korobkov
%T Lattice definability of certain matrix rings
%J Sbornik. Mathematics
%D 2017
%P 90-102
%V 208
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2017_208_1_a4/
%G en
%F SM_2017_208_1_a4
S. S. Korobkov. Lattice definability of certain matrix rings. Sbornik. Mathematics, Tome 208 (2017) no. 1, pp. 90-102. http://geodesic.mathdoc.fr/item/SM_2017_208_1_a4/

[1] B. R. McDonald, Finite rings with identity, Pure Appl. Math., 28, Marcel Dekker, Inc., New York, 1974, ix+429 pp. | MR | Zbl

[2] S. S. Korobkov, “Projections of Galois rings”, Algebra and Logic, 54:1 (2015), 10–22 | DOI | DOI | MR | Zbl

[3] D. W. Barnes, “Lattice isomorphisms of associative algebras”, J. Austral. Math. Soc., 6:1 (1966), 106–121 | DOI | MR | Zbl

[4] A. V. Yagzhev, “Lattice definability of certain matrix algebras”, Algebra and Logic, 13:1 (1974), 57–65 | DOI | Zbl

[5] S. S. Korobkov, “Periodicheskie koltsa s razlozhimymi v pryamoe proizvedenie reshetkami podkolets”, Issledovanie algebraicheskikh sistem po svoistvam ikh podsistem, Sb. nauch. tr., Ural. gos. ped. un-t, Ekaterinburg, 1998, 48–59

[6] S. S. Korobkov, E. M. Svinina, V. D. Smirnov, Assotsiativnye koltsa maloi dliny, Dep. v VINITI, No 1441-90, Sverdl. gos. ped. in-t, Sverdlovsk, 1990, 40 pp.

[7] P. A. Freidman, S. S. Korobkov, “Assotsiativnye koltsa i ikh reshetki podkolets”, Issledovanie algebraicheskikh sistem po svoistvam ikh podsistem, Sb. nauch. tr., Ural. gos. ped. un-t, Ekaterinburg, 1998, 4–47

[8] S. S. Korobkov, “Finite rings with exactly two maximal subrings”, Russian Math. (Iz. VUZ), 55:6 (2011), 46–52 | DOI | MR | Zbl

[9] S. S. Korobkov, “Projections of periodic nil-rings”, Soviet Math. (Iz. VUZ), 24:7 (1980), 33–44 | MR | Zbl

[10] I. L. Khmelnitskii, “Koltsa, v kotorykh vsyakaya additivnaya podgruppa yavlyaetsya podkoltsom”, Issledovanie algebraicheskikh sistem po svoistvam ikh podsistem, Sb. nauch. tr., Sverdl. gos. ped. in-t, Sverdlovsk, 1974, 118–138

[11] R. L. Kruse, D. T. Price, Nilpotent rings, Gordon and Breach Science Publishers, New York–London–Paris, 1969, viii+127 pp. | MR | Zbl

[12] N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Publ., 37, Amer. Math. Soc., Providence, RI, 1956, vii+263 pp. | MR | MR | Zbl | Zbl

[13] S. S. Korobkov, “Reshetochnye izomorfizmy konechnykh kolets bez nilpotentnykh elementov”, Izv. Ural. gos. un-ta, 2002, no. 22, Matem. i mekhan., Vyp. 4, 81–93 | MR | Zbl