Nontrivial pseudocharacters on groups with one defining relation and nontrivial centre
Sbornik. Mathematics, Tome 208 (2017) no. 1, pp. 75-89 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem concerning existence conditions for nontrivial pseudocharacters on one-relator groups with nontrivial centre is completely solved. It is proved that a nontrivial pseudocharacter exists on a group of this type if and only if the group is nonamenable. A pseudocharacter is a real function on a group for which the set $\{f(xy)-f(x)-f(y);\, x, y\in F\}$ is bounded and $ f( x^n)=nf(x)$ for all $n\in\mathbb{Z}$ and $x\in F$. The existence of pseudocharacters is related to many important characteristics and properties of groups, such as the cohomology groups and the width of verbal subgroups. From our results for pseudocharacters we obtain corollaries concerning the width of verbal subgroups and the second bounded cohomology group for the one-relator groups with nontrivial centre. Bibliography: 21 titles.
Keywords: nontrivial pseudocharacters, one-relator groups, bounded cohomology, width of verbal subgroups, amenability.
@article{SM_2017_208_1_a3,
     author = {D. Z. Kagan},
     title = {Nontrivial pseudocharacters on groups with one defining relation and nontrivial centre},
     journal = {Sbornik. Mathematics},
     pages = {75--89},
     year = {2017},
     volume = {208},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_1_a3/}
}
TY  - JOUR
AU  - D. Z. Kagan
TI  - Nontrivial pseudocharacters on groups with one defining relation and nontrivial centre
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 75
EP  - 89
VL  - 208
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_1_a3/
LA  - en
ID  - SM_2017_208_1_a3
ER  - 
%0 Journal Article
%A D. Z. Kagan
%T Nontrivial pseudocharacters on groups with one defining relation and nontrivial centre
%J Sbornik. Mathematics
%D 2017
%P 75-89
%V 208
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2017_208_1_a3/
%G en
%F SM_2017_208_1_a3
D. Z. Kagan. Nontrivial pseudocharacters on groups with one defining relation and nontrivial centre. Sbornik. Mathematics, Tome 208 (2017) no. 1, pp. 75-89. http://geodesic.mathdoc.fr/item/SM_2017_208_1_a3/

[1] R. I. Grigorchuk, “Some results on bounded cohomology”, Combinatorial and geometric group theory (Edinburgh, 1993), London Math. Soc. Lecture Note Ser., 204, Cambridge Univ. Press, Cambridge, 1994, 111–163 | MR | Zbl

[2] R. I. Grigorchuk, “Bounded cohomology of group constructions”, Math. Notes, 59:4 (1996), 392–394 | DOI | DOI | MR | Zbl

[3] A. I. Shtern, “Quasirepresentations and pseudorepresentations”, Funct. Anal. Appl., 25:2 (1991), 140–143 | DOI | MR | Zbl

[4] V. A. Faiziev, “The stability of a functional equation on groups”, Russian Math. Surveys, 48:1 (1993), 165–166 | DOI | MR | Zbl

[5] V. A. Faiziev, “Pseudocharacters on free groups and on certain group constructions”, Russian Math. Surveys, 43:5 (1988), 219–220 | DOI | MR | Zbl

[6] V. G. Bardakov, “On the width of verbal subgroups of certain free constructions”, Algebra and Logic, 36:5 (1997), 288–301 | DOI | MR | Zbl

[7] D. Z. Kagan, “Existence of nontrivial pseudo-characters on anomalous group products”, Moscow Univ. Math. Bull., 59:6 (2004), 24–28 | MR | Zbl

[8] D. Z. Kagan, “Pseudocharacters on anomalous products of locally indicable groups”, J. Math. Sci. (N. Y.), 149:3 (2008), 1224–1229 | DOI | MR | Zbl

[9] I. V. Dobrynina, “On the width in free products with amalgamation”, Math. Notes, 68:3 (2000), 306–311 | DOI | DOI | MR | Zbl

[10] I. V. Dobrynina, D. Z. Kagan, “O shirine verbalnykh podgrupp v nekotorykh klassakh grupp”, Chebyshevskii sb., 16:4 (2015), 150–163

[11] F. P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Mathematical Studies, 16, Van Nostrand Reinhold Co., New York–Toronto, Ont.–London, 1969, ix+113 pp. | MR | Zbl | Zbl

[12] R. I. Grigorchuk, “Degrees of growth of finitely generated groups, and the theory of invariant means”, Math. USSR-Izv., 25:2 (1985), 259–300 | DOI | MR | Zbl

[13] V. G. Bardakov, “Construction of a regularly exhausting sequence for groups with subexponential growth”, Algebra and Logic, 40:1 (2001), 12–16 | DOI | MR | Zbl

[14] J. von Neumann, “Zur allgemeinen Theorie des Maßes”, Fund. Math., 13 (1929), 73–116 | Zbl

[15] T. G. Ceccherini-Silberstein, R. I. Grigorchuk, “Amenability and growth of one-relator groups”, Enseign. Math. (2), 43:3-4 (1997), 337–354 | MR | Zbl

[16] M. Gromov, “Volume and bounded cohomology”, Inst. Hautes Études Sci. Publ. Math., 56 (1982), 5–99 | MR | Zbl

[17] B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc., 127, Amer. Math. Soc., Providence, RI, 1972, iii+96 pp. | MR | Zbl

[18] M. I. Kargapolov, Ju. I. Merzljakov, Fundamentals of the theory of groups, Grad. Texts in Math., 62, Springer-Verlag, New York–Berlin, 1979, xvii+203 pp. | MR | MR | Zbl | Zbl

[19] R. C. Lyndon, P. E. Schupp, Combinatorial group theory, Ergeb. Math. Grenzgeb., 89, Springer-Verlag, Berlin–New York, 1977, xiv+339 pp. | DOI | MR | MR | Zbl | Zbl

[20] W. Magnus, A. Karrass, D. Solitar, Combinatorial group theory. Presentations of groups in terms of generators and relations, Pure Appl. Math., 13, Intersci. Publ., John Wiley and Sons, Inc., New York, 1966, xii+444 pp. | MR | Zbl | Zbl

[21] D. I. Moldavanskii, “Certain subgroups of groups with a single defining relation”, Siberian Math. J., 8:6 (1968), 1039–1048 | DOI | MR | Zbl