@article{SM_2017_208_1_a3,
author = {D. Z. Kagan},
title = {Nontrivial pseudocharacters on groups with one defining relation and nontrivial centre},
journal = {Sbornik. Mathematics},
pages = {75--89},
year = {2017},
volume = {208},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_1_a3/}
}
D. Z. Kagan. Nontrivial pseudocharacters on groups with one defining relation and nontrivial centre. Sbornik. Mathematics, Tome 208 (2017) no. 1, pp. 75-89. http://geodesic.mathdoc.fr/item/SM_2017_208_1_a3/
[1] R. I. Grigorchuk, “Some results on bounded cohomology”, Combinatorial and geometric group theory (Edinburgh, 1993), London Math. Soc. Lecture Note Ser., 204, Cambridge Univ. Press, Cambridge, 1994, 111–163 | MR | Zbl
[2] R. I. Grigorchuk, “Bounded cohomology of group constructions”, Math. Notes, 59:4 (1996), 392–394 | DOI | DOI | MR | Zbl
[3] A. I. Shtern, “Quasirepresentations and pseudorepresentations”, Funct. Anal. Appl., 25:2 (1991), 140–143 | DOI | MR | Zbl
[4] V. A. Faiziev, “The stability of a functional equation on groups”, Russian Math. Surveys, 48:1 (1993), 165–166 | DOI | MR | Zbl
[5] V. A. Faiziev, “Pseudocharacters on free groups and on certain group constructions”, Russian Math. Surveys, 43:5 (1988), 219–220 | DOI | MR | Zbl
[6] V. G. Bardakov, “On the width of verbal subgroups of certain free constructions”, Algebra and Logic, 36:5 (1997), 288–301 | DOI | MR | Zbl
[7] D. Z. Kagan, “Existence of nontrivial pseudo-characters on anomalous group products”, Moscow Univ. Math. Bull., 59:6 (2004), 24–28 | MR | Zbl
[8] D. Z. Kagan, “Pseudocharacters on anomalous products of locally indicable groups”, J. Math. Sci. (N. Y.), 149:3 (2008), 1224–1229 | DOI | MR | Zbl
[9] I. V. Dobrynina, “On the width in free products with amalgamation”, Math. Notes, 68:3 (2000), 306–311 | DOI | DOI | MR | Zbl
[10] I. V. Dobrynina, D. Z. Kagan, “O shirine verbalnykh podgrupp v nekotorykh klassakh grupp”, Chebyshevskii sb., 16:4 (2015), 150–163
[11] F. P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Mathematical Studies, 16, Van Nostrand Reinhold Co., New York–Toronto, Ont.–London, 1969, ix+113 pp. | MR | Zbl | Zbl
[12] R. I. Grigorchuk, “Degrees of growth of finitely generated groups, and the theory of invariant means”, Math. USSR-Izv., 25:2 (1985), 259–300 | DOI | MR | Zbl
[13] V. G. Bardakov, “Construction of a regularly exhausting sequence for groups with subexponential growth”, Algebra and Logic, 40:1 (2001), 12–16 | DOI | MR | Zbl
[14] J. von Neumann, “Zur allgemeinen Theorie des Maßes”, Fund. Math., 13 (1929), 73–116 | Zbl
[15] T. G. Ceccherini-Silberstein, R. I. Grigorchuk, “Amenability and growth of one-relator groups”, Enseign. Math. (2), 43:3-4 (1997), 337–354 | MR | Zbl
[16] M. Gromov, “Volume and bounded cohomology”, Inst. Hautes Études Sci. Publ. Math., 56 (1982), 5–99 | MR | Zbl
[17] B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc., 127, Amer. Math. Soc., Providence, RI, 1972, iii+96 pp. | MR | Zbl
[18] M. I. Kargapolov, Ju. I. Merzljakov, Fundamentals of the theory of groups, Grad. Texts in Math., 62, Springer-Verlag, New York–Berlin, 1979, xvii+203 pp. | MR | MR | Zbl | Zbl
[19] R. C. Lyndon, P. E. Schupp, Combinatorial group theory, Ergeb. Math. Grenzgeb., 89, Springer-Verlag, Berlin–New York, 1977, xiv+339 pp. | DOI | MR | MR | Zbl | Zbl
[20] W. Magnus, A. Karrass, D. Solitar, Combinatorial group theory. Presentations of groups in terms of generators and relations, Pure Appl. Math., 13, Intersci. Publ., John Wiley and Sons, Inc., New York, 1966, xii+444 pp. | MR | Zbl | Zbl
[21] D. I. Moldavanskii, “Certain subgroups of groups with a single defining relation”, Siberian Math. J., 8:6 (1968), 1039–1048 | DOI | MR | Zbl