Korobov polynomials of the first kind
Sbornik. Mathematics, Tome 208 (2017) no. 1, pp. 60-74 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study Korobov polynomials of the first kind from the viewpoint of umbral calculus and give new identities for them, associated with special polynomials which are derived from umbral calculus. Bibliography: 12 titles.
Keywords: Korobov polynomials of the first kind
Mots-clés : umbral calculus.
@article{SM_2017_208_1_a2,
     author = {D. V. Dolgy and D. S. Kim and T. Kim},
     title = {Korobov polynomials of the first kind},
     journal = {Sbornik. Mathematics},
     pages = {60--74},
     year = {2017},
     volume = {208},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_1_a2/}
}
TY  - JOUR
AU  - D. V. Dolgy
AU  - D. S. Kim
AU  - T. Kim
TI  - Korobov polynomials of the first kind
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 60
EP  - 74
VL  - 208
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_1_a2/
LA  - en
ID  - SM_2017_208_1_a2
ER  - 
%0 Journal Article
%A D. V. Dolgy
%A D. S. Kim
%A T. Kim
%T Korobov polynomials of the first kind
%J Sbornik. Mathematics
%D 2017
%P 60-74
%V 208
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2017_208_1_a2/
%G en
%F SM_2017_208_1_a2
D. V. Dolgy; D. S. Kim; T. Kim. Korobov polynomials of the first kind. Sbornik. Mathematics, Tome 208 (2017) no. 1, pp. 60-74. http://geodesic.mathdoc.fr/item/SM_2017_208_1_a2/

[1] S. Araci, M. Acikgoz, “A note on the Frobenius–Euler numbers and polynomials associated with Bernstein polynomials”, Adv. Stud. Contemp. Math. (Kyungshang), 22:3 (2012), 399–406 | MR | Zbl

[2] Qin Fang, Tianming Wang, “Umbral calculus and invariant sequences”, Ars Combin., 101 (2011), 257–264 | MR | Zbl

[3] S. Gaboury, R. Tremblay, B.-J. Fugère, “Some explicit formulas for certain new classes of Bernoulli, Euler and Genocchi polynomials”, Proc. Jangjeon Math. Soc., 17:1 (2014), 115–123 | MR | Zbl

[4] S. Kanemitsu, H. Tsukada, Vistas of special functions, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007, xii+215 pp. | DOI | MR | Zbl

[5] Dae San Kim, Taekyun Kim, Sang-Hun Lee, “Poly-Cauchy numbers and polynomials with umbral calculus viewpoint”, Int. J. Math. Anal. (Ruse), 7:45-48 (2013), 2235–2253 | DOI | MR

[6] T. Kim, “Identities involving Laguerre polynomials derived from umbral calculus”, Russ. J. Math. Phys., 21:1 (2014), 36–45 | DOI | MR | Zbl

[7] N. M. Korobov, “O nekotorykh svoistvakh spetsialnykh polinomov”, Chebyshevskii sb., 1:1 (2001), 40–49 | MR | Zbl

[8] N. M. Korobov, “Spetsialnye polinomy i ikh prilozheniya”, Diofantovy priblizheniya, Matem. zapiski, 2, MGU, M., 1996, 77–89

[9] S. Roman, The umbral calculus, Pure Appl. Math., 111, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1984, x+193 pp. | MR | Zbl

[10] C. S. Ryoo, “A note on the Frobenius–Euler polynomials”, Proc. Jangjeon Math. Soc., 14:4 (2011), 495–501 | MR | Zbl

[11] A. V. Ustinov, “Polinomy Korobova i tenevoi analiz”, Chebyshevskii sb., 4:4(8) (2003), 137–152 | MR | Zbl

[12] A. V. Ustinov, “Ob odnom obobschenii chisel Stirlinga”, Chebyshevskii sb., 3:2(4) (2002), 107–122 | MR | Zbl