Approximation of functions and their conjugates in variable Lebesgue spaces
Sbornik. Mathematics, Tome 208 (2017) no. 1, pp. 44-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

One-sided Steklov means are used to introduce moduli of continuity of natural order in variable $L^{p(\cdot)}_{2\pi}$-spaces. A direct theorem of Jackson-Stechkin type and an inverse theorem of Salem-Stechkin type are given. Similar results are obtained for the conjugate functions. Bibliography: 24 titles.
Keywords: $K$-functional, generalized modulus of continuity, direct and inverse approximation theorems, conjugate function.
Mots-clés : variable Lebesgue space, variable Sobolev space
@article{SM_2017_208_1_a1,
     author = {S. S. Volosivets},
     title = {Approximation of functions and their conjugates in variable {Lebesgue} spaces},
     journal = {Sbornik. Mathematics},
     pages = {44--59},
     year = {2017},
     volume = {208},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_1_a1/}
}
TY  - JOUR
AU  - S. S. Volosivets
TI  - Approximation of functions and their conjugates in variable Lebesgue spaces
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 44
EP  - 59
VL  - 208
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_1_a1/
LA  - en
ID  - SM_2017_208_1_a1
ER  - 
%0 Journal Article
%A S. S. Volosivets
%T Approximation of functions and their conjugates in variable Lebesgue spaces
%J Sbornik. Mathematics
%D 2017
%P 44-59
%V 208
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2017_208_1_a1/
%G en
%F SM_2017_208_1_a1
S. S. Volosivets. Approximation of functions and their conjugates in variable Lebesgue spaces. Sbornik. Mathematics, Tome 208 (2017) no. 1, pp. 44-59. http://geodesic.mathdoc.fr/item/SM_2017_208_1_a1/

[1] W. Orlicz, “Über konjugierte Exponentenfolgen”, Studia Math., 3:1 (1931), 200–211 | Zbl

[2] H. Nakano, Topology and linear topological spaces, Maruzen Co., Ltd., Tokyo, 1951, viii+281 pp. | MR

[3] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math., 1034, Springer-Verlag, Berlin, 1983, iii+222 pp. | DOI | MR | Zbl

[4] A. N. Kolmogoroff, “Zur Normierbarkeit eines allgemeinen topologischen linearen Raumes”, Studia Math., 5:1 (1934), 29–33 | Zbl

[5] I. I. Sharapudinov, “Topology of the space $\mathscr L^{p(t)}([0,1])$”, Math. Notes, 26:4 (1979), 796–806 | DOI | MR | Zbl

[6] O. Kováčik, J. Rákosník, “On spaces $L^{p(x)}$ and $W^{k,p(x)}$”, Czechoslovak Math. J., 41(116):4 (1991), 592–618 | MR | Zbl

[7] I. I. Sharapudinov, “Priblizhenie funktsii v metrike prostranstva $L^{p(t)}([a,b])$ i kvadraturnye formuly”, Constructive function theory' 81 (Varna, 1981), Publ. House Bulgar. Acad. Sci., Sofia, 1983, 189–193 | MR | Zbl

[8] L. Diening, P. Harjulehto, P. Hästö, M. Růžička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Math., 2017, Springer, Heidelberg, 2011, x+509 pp. | DOI | MR | Zbl

[9] D. V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue spaces. Foundations and harmonic analysis, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Heidelberg, 2013, x+312 pp. | DOI | MR | Zbl

[10] I. I. Sharapudinov, “Uniform boundedness in $L^p$ $(p=p(x))$ of some families of convolution operators”, Math. Notes, 59:2 (1996), 205–212 | DOI | DOI | MR | Zbl

[11] D. Israfilov, V. Kokilashvili, S. Samko, “Approximation in weighted Lebesgue and Smirnov spaces with variable exponents”, Proc. A. Razmadze Math. Inst., 143 (2007), 25–35 | MR | Zbl

[12] A. Guven, D. M. Israfilov, “Trigonometric approximation in generalized Lebesgue space $L^{p(x)}$”, J. Math. Inequal., 4:2 (2010), 285–299 | DOI | MR | Zbl

[13] R. Akgün, “Trigonometric approximation of functions in generalized Lebesgue spaces with variable exponent”, Ukranian Math. J., 63:1 (2011), 1–26 | DOI | MR | Zbl

[14] R. Akgün, V. Kokilashvili, “On converse theorems of trigonometric approximation in weighted variable exponent Lebesgue spaces”, Banach J. Math. Anal., 5:1 (2011), 70–82 | DOI | MR | Zbl

[15] I. I. Sharapudinov, “Approximation of functions in $L^{p(x)}_{2\pi}$ by trigonometric polynomials”, Izv. Math., 77:2 (2013), 407–434 | DOI | DOI | MR | Zbl

[16] I. I. Sharapudinov, “Priblizhenie gladkikh funktsii v $L^{p(x)}_{2\pi}$ srednimi Valle-Pussena”, Izv. Sarat. un-ta. Nov ser. Ser. Matematika. Mekhanika. Informatika, 13:1(1) (2013), 45–49 | Zbl

[17] I. I. Sharapudinov, “On direct and inverse theorems of approximation theory in variable Lebesgue and Sobolev spaces”, Azerb. J. Math., 4:1 (2014), 55–72 | MR | Zbl

[18] N. K. Bary, A treatise on trigonometric series, v. I, II, A Pergamon Press Book, The Macmillan Co., New York, 1964, xxiii+553 pp., xix+508 pp. | MR | MR | Zbl

[19] I. I. Sharapudinov, “Nekotorye voprosy teorii priblizheniya v prostranstvakh $L^{p(x)}(E)$”, Anal. Math., 33:2 (2007), 135–153 | DOI | MR | Zbl

[20] D. Cruz-Uribe, A. Fiorenza, J. M. Martell, C. Pérez, “The boundedness of classical operators on variable $L^p$ spaces”, Ann. Acad. Sci. Fenn. Math., 31:1 (2006), 239–264 | MR | Zbl

[21] G. Alexits, “Sur l'ordre de grandeur de l'approximation d'une fonction périodique par les sommes de Fejér”, Acta Math. Acad. Sci. Hungar., 3 (1952), 29–42 | DOI | MR | Zbl

[22] S. S. Volosivets, “Approximation by polynomials with respect to multiplicative systems in weighted $L^p$-spaces”, Siberian Math. J., 56:1 (2015), 68–77 | DOI | MR | Zbl

[23] J. Czipszer, G. Freud, “Sur l'approximation d'une fonction périodique et de ses dérivées successives par un polynome trigonométrique et par ses dérivées successives”, Acta Math., 99:1 (1958), 33–51 | DOI | MR | Zbl

[24] N. K. Bari, S. B. Stechkin, “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. MMO, 5, GITTL, M., 1956, 483–522 | MR | Zbl