Approximation of functions and their conjugates in variable Lebesgue spaces
Sbornik. Mathematics, Tome 208 (2017) no. 1, pp. 44-59
Voir la notice de l'article provenant de la source Math-Net.Ru
One-sided Steklov means are used to introduce moduli of continuity of natural order in variable $L^{p(\cdot)}_{2\pi}$-spaces. A direct theorem of Jackson-Stechkin type and an inverse theorem of Salem-Stechkin type are given. Similar results are obtained for the conjugate functions.
Bibliography: 24 titles.
Keywords:
$K$-functional, generalized modulus of continuity, direct and inverse approximation theorems, conjugate function.
Mots-clés : variable Lebesgue space, variable Sobolev space
Mots-clés : variable Lebesgue space, variable Sobolev space
@article{SM_2017_208_1_a1,
author = {S. S. Volosivets},
title = {Approximation of functions and their conjugates in variable {Lebesgue} spaces},
journal = {Sbornik. Mathematics},
pages = {44--59},
publisher = {mathdoc},
volume = {208},
number = {1},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_1_a1/}
}
S. S. Volosivets. Approximation of functions and their conjugates in variable Lebesgue spaces. Sbornik. Mathematics, Tome 208 (2017) no. 1, pp. 44-59. http://geodesic.mathdoc.fr/item/SM_2017_208_1_a1/