@article{SM_2017_208_1_a0,
author = {A. G. Baskakov and D. M. Polyakov},
title = {The method of similar operators in the spectral analysis of the {Hill} operator with nonsmooth potential},
journal = {Sbornik. Mathematics},
pages = {1--43},
year = {2017},
volume = {208},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_1_a0/}
}
TY - JOUR AU - A. G. Baskakov AU - D. M. Polyakov TI - The method of similar operators in the spectral analysis of the Hill operator with nonsmooth potential JO - Sbornik. Mathematics PY - 2017 SP - 1 EP - 43 VL - 208 IS - 1 UR - http://geodesic.mathdoc.fr/item/SM_2017_208_1_a0/ LA - en ID - SM_2017_208_1_a0 ER -
A. G. Baskakov; D. M. Polyakov. The method of similar operators in the spectral analysis of the Hill operator with nonsmooth potential. Sbornik. Mathematics, Tome 208 (2017) no. 1, pp. 1-43. http://geodesic.mathdoc.fr/item/SM_2017_208_1_a0/
[1] M. A. Naimark, Linear differential operators, v. I, II, Frederick Ungar Publishing Co., New York, 1967, 1968, xiii+144 pp., xv+352 pp. | MR | MR | MR | Zbl | Zbl
[2] V. A. Marchenko, Sturm–Liouville operators and applications, Oper. Theory Adv. Appl., 22, Birkhäuser Verlag, Basel, 1986, xii+367 pp. | DOI | MR | MR | Zbl | Zbl
[3] A. M. Savchuk, A. A. Shkalikov, “On the eigenvalues of the Sturm–Liouville operator with potentials from Sobolev spaces”, Math. Notes, 80:6 (2006), 814–832 | DOI | DOI | MR | Zbl
[4] P. Djakov, B. S. Mityagin, “Instability zones of periodic 1-dimensional Schrödinger and Dirac operators”, Russian Math. Surveys, 61:4 (2006), 663–766 | DOI | DOI | MR | Zbl
[5] Ju. L. Daleckiĭ, M. G. Kreĭn, Stability of solutions of differential equations in Banach space, Transl. Math. Monogr., 43, Amer. Math. Soc., Providence, RI, 1974, vi+386 pp. | MR | MR | Zbl | Zbl
[6] A. G. Baskakov, Zamena Krylova–Bogolyubova v teorii nelineinykh vozmuschenii lineinykh operatorov, Preprint No 80.19, In-t matem. AN USSR, Kiev, 1980, 44 pp. | MR
[7] A. G. Baskakov, “An abstract analog of the Krylov–Bogolyubov transformation in the perturbation theory of linear operators”, Funct. Anal. Appl., 33:2 (1999), 144–147 | DOI | DOI | MR | Zbl
[8] K. O. Friedrichs, Perturbation of spectra in Hilbert space, Lectures in Appl. Math., 3, Amer. Math. Soc., Providence, RI, 1965, xiii+178 pp. | MR | Zbl
[9] N. Dunford, J. T. Schwartz, Linear operators, v. III, Pure Appl. Math., 7, Spectral operators, Interscience Publishers [John Wiley Sons, Inc.], New York–London–Sydney, 1971 | MR | Zbl | Zbl
[10] A. G. Baskakov, “Methods of abstract harmonic analysis in the perturbation of linear operators”, Siberian Math. J., 24:1 (1983), 17–32 | DOI | MR | Zbl
[11] A. G. Baskakov, “A theorem on splitting an operator, and some related questions in the analytic theory of perturbations”, Math. USSR-Izv., 28:3 (1987), 421–444 | DOI | MR | Zbl
[12] A. G. Baskakov, T. K. Katsaran, “Spectral analysis of integrodifferential operators with nonlocal boundary conditions”, Differential Equations, 24:8 (1988), 934–941 | MR | Zbl
[13] A. G. Baskakov, “Spectral analysis of perturbed nonquasianalytic and spectral operators”, Russian Acad. Sci. Izv. Math., 45:1 (1995), 1–31 | DOI | MR | Zbl
[14] A. G. Baskakov, “Rasscheplenie vozmuschennogo differentsialnogo operatora s neogranichennymi operatornymi koeffitsientami”, Fundament. i prikl. matem., 8:1 (2002), 1–16 | MR | Zbl
[15] A. G. Baskakov, A. V. Derbushev, A. O. Shcherbakov, “The method of similar operators in the spectral analysis of non-self-adjoint Dirac operators with non-smooth potentials”, Izv. Math., 75:3 (2011), 445–469 | DOI | DOI | MR | Zbl
[16] D. M. Polyakov, “Spectral analysis of a fourth-order nonselfadjoint operator with nonsmooth coefficients”, Siberian Math. J., 56:1 (2015), 138–154 | DOI | MR | Zbl
[17] D. M. Polyakov, “Method of similar operators in spectral analysis of a fourth-order nonself-adjoint operator”, Differ. Equ., 51:3 (2015), 421–425 | DOI | MR | Zbl
[18] D. M. Polyakov, “Spectral analysis of a fourth order differential operator with periodic and antiperiodic boundary conditions”, St. Petersburg Math. J., 27:5 (2016), 789–811 | DOI | Zbl
[19] A. G. Baskakov, “Estimates for the Green's function and parameters of exponential dichotomy of a hyperbolic operator semigroup and linear relations”, Sb. Math., 206:8 (2015), 1049–1086 | DOI | DOI | MR | Zbl
[20] F. Gesztesy, V. Tkachenko, “A Schauder and Riesz basis criterion for non-self-adjoint Schrödinger operators with periodic and antiperiodic boundary conditions”, J. Differ. Equations, 253:2 (2012), 400–437 | DOI | MR | Zbl
[21] A. A. Shkalikov, O. A. Veliev, “On the Riesz basis property of the eigen- and associated functions of periodic and antiperiodic Sturm–Liouville problems”, Math. Notes, 85:6 (2009), 647–660 | DOI | DOI | MR | Zbl
[22] A. A. Shkalikov, “On the basis problem of the eigenfunctions of an ordinary differential operator”, Russian Math. Surveys, 34:5 (1979), 249–250 | DOI | MR | Zbl
[23] N. B. Kerimov, Kh. R. Mamedov, “On the Riesz basis property of the root functions in certain regular boundary value problems”, Math. Notes, 64:4 (1998), 483–487 | DOI | DOI | MR | Zbl
[24] P. Djakov, B. Mityagin, “Spectral triangles of Schrödinger operators with complex potentials”, Selecta Math. (N.S.), 9:4 (2003), 495–528 | DOI | MR | Zbl
[25] P. Djakov, B. Mityagin, “Criteria for existence of Riesz bases consisting of root functions of Hill and 1D Dirac operators”, J. Funct. Anal., 263:8 (2012), 2300–2332 | DOI | MR | Zbl
[26] P. Djakov, B. S. Mityagin, “Riesz basis property of Hill operators with potentials in weighted spaces”, Tr. MMO, 75:2 (2014), 181–204, MTsNMO, M. | MR | Zbl
[27] A. S. Makin, “Convergence of expansions in the root functions of periodic boundary value problems”, Dokl. Math., 73:1 (2006), 71–76 | DOI | MR | Zbl
[28] Kh. R. Mamedov, “On the basis property in $L_p(0, 1)$ of the root functions of non-self adjoint Sturm–Lioville operators”, Eur. J. Pure Appl. Math., 3:5 (2010), 831–838 | MR | Zbl
[29] I. C. Gohberg, M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, RI, 1969, xv+378 pp. | MR | MR | Zbl | Zbl
[30] A. G. Baskakov, D. M. Polyakov, “Spectral properties of the Hill operator”, Math. Notes, 99:4 (2016), 598–602 | DOI | DOI | MR | Zbl
[31] A. G. Baskakov, A. A. Vorob'ev, M. Yu. Romanova, “Hyperbolic operator semigroups and Lyapunov's equation”, Math. Notes, 89:2 (2011), 194–205 | DOI | DOI | MR | Zbl
[32] A. Zygmund, Trigonometric series, v. I, 2nd ed., Cambridge Univ. Press, New York, 1959, xii+383 pp. | MR | MR | Zbl | Zbl
[33] A. A. Kirillov, Elements of the theory of representations, Grundlehren Math. Wiss., 220, Springer-Verlag, Berlin–New York, 1976, xi+315 pp. | MR | MR | Zbl | Zbl
[34] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Math., 840, Springer-Verlag, Berlin–New York, 1981, iv+348 pp. | MR | MR | Zbl | Zbl