Some remarks on sets with small quotient set
Sbornik. Mathematics, Tome 208 (2017) no. 12, pp. 1854-1868 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that for any finite set $A\subset \mathbb{R}$ with $|A/A| \ll |A|$ we have $|A-A| \gg |A|^{5/3 - o(1)}$. We also show that for such sets $|A+A+A| \gg |A|^{2-o(1)}$. Bibliography: 22 titles.
Keywords: additive combinatorics, sum-product phenomenon, Erdős-Szemerédi conjecture.
@article{SM_2017_208_12_a6,
     author = {I. D. Shkredov},
     title = {Some remarks on sets with small quotient set},
     journal = {Sbornik. Mathematics},
     pages = {1854--1868},
     year = {2017},
     volume = {208},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_12_a6/}
}
TY  - JOUR
AU  - I. D. Shkredov
TI  - Some remarks on sets with small quotient set
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 1854
EP  - 1868
VL  - 208
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_12_a6/
LA  - en
ID  - SM_2017_208_12_a6
ER  - 
%0 Journal Article
%A I. D. Shkredov
%T Some remarks on sets with small quotient set
%J Sbornik. Mathematics
%D 2017
%P 1854-1868
%V 208
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2017_208_12_a6/
%G en
%F SM_2017_208_12_a6
I. D. Shkredov. Some remarks on sets with small quotient set. Sbornik. Mathematics, Tome 208 (2017) no. 12, pp. 1854-1868. http://geodesic.mathdoc.fr/item/SM_2017_208_12_a6/

[1] A. Bush, E. Croot, Few products, many $h$-fold sums, arXiv: 1409.7349v4

[2] Mei-Chu Chang, “Erdős–Szemerédi problem on sum set and product set”, Ann. of Math. (2), 157:3 (2003), 939–957 | DOI | MR | Zbl

[3] G. Elekes, “On the number of sums and products”, Acta Arith., 81:4 (1997), 365–367 | DOI | MR | Zbl

[4] G. Elekes, I. S. Ruzsa, “Few sums, many products”, Studia Sci. Math. Hungar., 40:3 (2003), 301–308 | DOI | MR | Zbl

[5] P. Erdős, E. Szemerédi, “On sums and products of integers”, Studies in pure mathematics, Birkhäuser, Basel, 1983, 213–218 | MR | Zbl

[6] W. T. Gowers, “A new proof of Szemerédi's theorem”, Geom. Funct. Anal., 11:3 (2001), 465–588 | DOI | MR | Zbl

[7] Liangpan Li, O. Roche-Newton, “Convexity and a sum-product type estimate”, Acta Arith., 156:3 (2012), 247–256 | DOI | MR | Zbl

[8] S. Konyagin, “$h$-fold sums from a set with few products”, Mosc. J. Comb. Number Theory, 4:3 (2014), 14–20 | MR | Zbl

[9] S. V. Konyagin, I. D. Shkredov, “On sum sets of sets having small product set”, Proc. Steklov Inst. Math., 290:1 (2015), 288–299 | DOI | DOI | MR | Zbl

[10] S. V. Konyagin, I. D. Shkredov, “New results on sum and products in $\mathbb R$”, Proc. Steklov Inst. Math., 294 (2016), 78–88 | DOI | DOI | MR | Zbl

[11] O. Roche-Newton, “A short proof of a near-optimal cardinality estimate for the product of a sum set”, 31st international symposium on computational geometry (SoCG2015), LIPIcs. Leibniz Int. Proc. Inform., 34, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2015, 74–80 | DOI | MR

[12] O. Roche-Newton, M. Rudnev, I. D. Shkredov, “New sum-product type estimates over finite fields”, Adv. Math., 293 (2016), 589–605 | DOI | MR | Zbl

[13] M. Rudnev, On the number of incidences between planes and points in three dimensions, arXiv: 1407.0426v3

[14] T. Schoen, I. D. Shkredov, “Higher moments of convolutions”, J. Number Theory, 133:5 (2013), 1693–1737 | DOI | MR | Zbl

[15] I. D. Shkredov, “Energies and structure of additive sets”, Electron. J. Combin., 21:3 (2014), Paper No. 3.44, 53 pp. | MR | Zbl

[16] I. D. Shkredov, “On sums of Szemerédi–Trotter sets”, Proc. Steklov Inst. Math., 289 (2015), 300–309 | DOI | DOI | MR | Zbl

[17] I. D. Shkredov, “On tripling constant of multiplicative subgroups”, Integers, 16 (2016), Paper No. A75, 9 pp. | MR | Zbl

[18] I. D. Shkredov, “Difference sets are not multiplicatively closed”, Discrete Anal., 2016, Paper No. 17, 21 pp. | DOI | MR | Zbl

[19] J. Solymosi, “On the number of sums and products”, Bull. London Math. Soc., 37:4 (2005), 491–494 | DOI | MR | Zbl

[20] J. Solymosi, “Bounding multiplicative energy by the sumset”, Adv. Math., 222:2 (2009), 402–408 | DOI | MR | Zbl

[21] E. Szemerédi, W. T. Trotter Jr., “Extremal problems in discrete geometry”, Combinatorica, 3:3-4 (1983), 381–392 | DOI | MR | Zbl

[22] T. Tao, Van H. Vu, Additive combinatorics, Cambridge Stud. Adv. Math., 105, Cambridge Univ. Press, Cambridge, 2006, xviii+512 pp. | DOI | MR | Zbl