Some remarks on sets with small quotient set
Sbornik. Mathematics, Tome 208 (2017) no. 12, pp. 1854-1868

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that for any finite set $A\subset \mathbb{R}$ with $|A/A| \ll |A|$ we have $|A-A| \gg |A|^{5/3 - o(1)}$. We also show that for such sets $|A+A+A| \gg |A|^{2-o(1)}$. Bibliography: 22 titles.
Keywords: additive combinatorics, sum-product phenomenon, Erdős-Szemerédi conjecture.
@article{SM_2017_208_12_a6,
     author = {I. D. Shkredov},
     title = {Some remarks on sets with small quotient set},
     journal = {Sbornik. Mathematics},
     pages = {1854--1868},
     publisher = {mathdoc},
     volume = {208},
     number = {12},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_12_a6/}
}
TY  - JOUR
AU  - I. D. Shkredov
TI  - Some remarks on sets with small quotient set
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 1854
EP  - 1868
VL  - 208
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_12_a6/
LA  - en
ID  - SM_2017_208_12_a6
ER  - 
%0 Journal Article
%A I. D. Shkredov
%T Some remarks on sets with small quotient set
%J Sbornik. Mathematics
%D 2017
%P 1854-1868
%V 208
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2017_208_12_a6/
%G en
%F SM_2017_208_12_a6
I. D. Shkredov. Some remarks on sets with small quotient set. Sbornik. Mathematics, Tome 208 (2017) no. 12, pp. 1854-1868. http://geodesic.mathdoc.fr/item/SM_2017_208_12_a6/