Minimum nonuniform graph partitioning with unrelated weights
Sbornik. Mathematics, Tome 208 (2017) no. 12, pp. 1835-1853

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a bi-criteria approximation algorithm for the Minimum Nonuniform Graph Partitioning problem, recently introduced by Krauthgamer, Naor, Schwartz and Talwar. In this problem, we are given a graph $G=(V,E)$ and $k$ numbers $\rho_1,\dots, \rho_k$. The goal is to partition $V$ into $k$ disjoint sets (bins) $P_1,\dots, P_k$ satisfying $|P_i|\leq \rho_i |V|$ for all $i$, so as to minimize the number of edges cut by the partition. Our bi-criteria algorithm gives an $O(\sqrt{\log |V| \log k})$ approximation for the objective function in general graphs and an $O(1)$ approximation in graphs excluding a fixed minor. The approximate solution satisfies the relaxed capacity constraints $|P_i| \leq (5+ \varepsilon)\rho_i |V|$. This algorithm is an improvement upon the $O(\log |V|)$-approximation algorithm by Krauthgamer, Naor, Schwartz and Talwar. We extend our results to the case of ‘unrelated weights’ and to the case of `unrelated $d$-dimensional weights'. A preliminary version of this work was presented at the 41st International Colloquium on Automata, Languages and Programming (ICALP 2014). Bibliography: 7 titles.
Keywords: minimum nonuniform graph partitioning problem, minimum nonuniform graph partitioning problem with unrelated weights, approximation for trees, approximation algorithm, semidefinite programming.
@article{SM_2017_208_12_a5,
     author = {K. S. Makarychev and Yu. S. Makarychev},
     title = {Minimum nonuniform graph partitioning with unrelated weights},
     journal = {Sbornik. Mathematics},
     pages = {1835--1853},
     publisher = {mathdoc},
     volume = {208},
     number = {12},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_12_a5/}
}
TY  - JOUR
AU  - K. S. Makarychev
AU  - Yu. S. Makarychev
TI  - Minimum nonuniform graph partitioning with unrelated weights
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 1835
EP  - 1853
VL  - 208
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_12_a5/
LA  - en
ID  - SM_2017_208_12_a5
ER  - 
%0 Journal Article
%A K. S. Makarychev
%A Yu. S. Makarychev
%T Minimum nonuniform graph partitioning with unrelated weights
%J Sbornik. Mathematics
%D 2017
%P 1835-1853
%V 208
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2017_208_12_a5/
%G en
%F SM_2017_208_12_a5
K. S. Makarychev; Yu. S. Makarychev. Minimum nonuniform graph partitioning with unrelated weights. Sbornik. Mathematics, Tome 208 (2017) no. 12, pp. 1835-1853. http://geodesic.mathdoc.fr/item/SM_2017_208_12_a5/