Tight space-noise tradeoffs in computing the ergodic measure
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 208 (2017) no. 12, pp. 1758-1783
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper we obtain tight bounds on the space-complexity of computing the ergodic measure of a low-dimensional discrete-time dynamical system affected by Gaussian noise. If the scale of the noise is $\varepsilon$, and the function describing the evolution of the system is not itself a source of computational complexity, then the density function of the ergodic measure can be approximated within precision $\delta$ in space polynomial in $\log 1/\varepsilon+\log\log 1/\delta$. We also show that this bound is tight up to polynomial factors.
In the course of showing the above, we prove a result of independent interest in space-bounded computation: namely, that it is possible to exponentiate an $(n\times n)$-matrix to an exponentially large power in space polylogarithmic in $n$.
Bibliography: 25 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
dynamical systems, space-bounded computations.
                    
                    
                    
                  
                
                
                @article{SM_2017_208_12_a2,
     author = {M. Braverman and C. Rojas and J. Schneider},
     title = {Tight space-noise tradeoffs in computing the ergodic measure},
     journal = {Sbornik. Mathematics},
     pages = {1758--1783},
     publisher = {mathdoc},
     volume = {208},
     number = {12},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_12_a2/}
}
                      
                      
                    TY - JOUR AU - M. Braverman AU - C. Rojas AU - J. Schneider TI - Tight space-noise tradeoffs in computing the ergodic measure JO - Sbornik. Mathematics PY - 2017 SP - 1758 EP - 1783 VL - 208 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2017_208_12_a2/ LA - en ID - SM_2017_208_12_a2 ER -
M. Braverman; C. Rojas; J. Schneider. Tight space-noise tradeoffs in computing the ergodic measure. Sbornik. Mathematics, Tome 208 (2017) no. 12, pp. 1758-1783. http://geodesic.mathdoc.fr/item/SM_2017_208_12_a2/
