Tight space-noise tradeoffs in computing the ergodic measure
Sbornik. Mathematics, Tome 208 (2017) no. 12, pp. 1758-1783

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we obtain tight bounds on the space-complexity of computing the ergodic measure of a low-dimensional discrete-time dynamical system affected by Gaussian noise. If the scale of the noise is $\varepsilon$, and the function describing the evolution of the system is not itself a source of computational complexity, then the density function of the ergodic measure can be approximated within precision $\delta$ in space polynomial in $\log 1/\varepsilon+\log\log 1/\delta$. We also show that this bound is tight up to polynomial factors. In the course of showing the above, we prove a result of independent interest in space-bounded computation: namely, that it is possible to exponentiate an $(n\times n)$-matrix to an exponentially large power in space polylogarithmic in $n$. Bibliography: 25 titles.
Keywords: dynamical systems, space-bounded computations.
@article{SM_2017_208_12_a2,
     author = {M. Braverman and C. Rojas and J. Schneider},
     title = {Tight space-noise tradeoffs in computing the ergodic measure},
     journal = {Sbornik. Mathematics},
     pages = {1758--1783},
     publisher = {mathdoc},
     volume = {208},
     number = {12},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_12_a2/}
}
TY  - JOUR
AU  - M. Braverman
AU  - C. Rojas
AU  - J. Schneider
TI  - Tight space-noise tradeoffs in computing the ergodic measure
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 1758
EP  - 1783
VL  - 208
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_12_a2/
LA  - en
ID  - SM_2017_208_12_a2
ER  - 
%0 Journal Article
%A M. Braverman
%A C. Rojas
%A J. Schneider
%T Tight space-noise tradeoffs in computing the ergodic measure
%J Sbornik. Mathematics
%D 2017
%P 1758-1783
%V 208
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2017_208_12_a2/
%G en
%F SM_2017_208_12_a2
M. Braverman; C. Rojas; J. Schneider. Tight space-noise tradeoffs in computing the ergodic measure. Sbornik. Mathematics, Tome 208 (2017) no. 12, pp. 1758-1783. http://geodesic.mathdoc.fr/item/SM_2017_208_12_a2/