Sign rank versus Vapnik-Chervonenkis dimension
Sbornik. Mathematics, Tome 208 (2017) no. 12, pp. 1724-1757

Voir la notice de l'article provenant de la source Math-Net.Ru

This work studies the maximum possible sign rank of sign $(N \times N)$-matrices with a given Vapnik-Chervonenkis dimension $d$. For $d=1$, this maximum is three. For $d=2$, this maximum is $\widetilde{\Theta}(N^{1/2})$. For $d >2$, similar but slightly less accurate statements hold. The lower bounds improve on previous ones by Ben-David et al., and the upper bounds are novel. The lower bounds are obtained by probabilistic constructions, using a theorem of Warren in real algebraic topology. The upper bounds are obtained using a result of Welzl about spanning trees with low stabbing number, and using the moment curve. The upper bound technique is also used to: (i) provide estimates on the number of classes of a given Vapnik-Chervonenkis dimension, and the number of maximum classes of a given Vapnik-Chervonenkis dimension—answering a question of Frankl from 1989, and (ii) design an efficient algorithm that provides an $O(N/\log(N))$ multiplicative approximation for the sign rank. We also observe a general connection between sign rank and spectral gaps which is based on Forster's argument. Consider the adjacency $(N \times N)$-matrix of a $\Delta$-regular graph with a second eigenvalue of absolute value $\lambda$ and $\Delta \leq N/2$. We show that the sign rank of the signed version of this matrix is at least $\Delta/\lambda$. We use this connection to prove the existence of a maximum class $C\subseteq\{\pm 1\}^N$ with Vapnik-Chervonenkis dimension $2$ and sign rank $\widetilde{\Theta}(N^{1/2})$. This answers a question of Ben-David et al. regarding the sign rank of large Vapnik-Chervonenkis classes. We also describe limitations of this approach, in the spirit of the Alon-Boppana theorem. We further describe connections to communication complexity, geometry, learning theory, and combinatorics. Bibliography: 69 titles.
Keywords: hyperplane arrangement, sign rank, half-spaces, linear classifiers, unbounded-error communication complexity.
Mots-clés : VC dimension
@article{SM_2017_208_12_a1,
     author = {N. Alon and Sh. Moran and A. Yehudayoff},
     title = {Sign rank versus {Vapnik-Chervonenkis} dimension},
     journal = {Sbornik. Mathematics},
     pages = {1724--1757},
     publisher = {mathdoc},
     volume = {208},
     number = {12},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_12_a1/}
}
TY  - JOUR
AU  - N. Alon
AU  - Sh. Moran
AU  - A. Yehudayoff
TI  - Sign rank versus Vapnik-Chervonenkis dimension
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 1724
EP  - 1757
VL  - 208
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_12_a1/
LA  - en
ID  - SM_2017_208_12_a1
ER  - 
%0 Journal Article
%A N. Alon
%A Sh. Moran
%A A. Yehudayoff
%T Sign rank versus Vapnik-Chervonenkis dimension
%J Sbornik. Mathematics
%D 2017
%P 1724-1757
%V 208
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2017_208_12_a1/
%G en
%F SM_2017_208_12_a1
N. Alon; Sh. Moran; A. Yehudayoff. Sign rank versus Vapnik-Chervonenkis dimension. Sbornik. Mathematics, Tome 208 (2017) no. 12, pp. 1724-1757. http://geodesic.mathdoc.fr/item/SM_2017_208_12_a1/