On Schr\"odinger's bridge problem
Sbornik. Mathematics, Tome 208 (2017) no. 11, pp. 1705-1721

Voir la notice de l'article provenant de la source Math-Net.Ru

In the first part of this paper we generalize Georgiou-Pavon's result that a positive square matrix can be scaled uniquely to a column stochastic matrix which maps a given positive probability vector to another given positive probability vector. In the second part we prove that a positive quantum channel can be scaled to another positive quantum channel which maps a given positive definite density matrix to another given positive definite density matrix using Brouwer's fixed point theorem. This result proves the Georgiou-Pavon conjecture for two positive definite density matrices, made in their recent paper. We show that the fixed points are unique for certain pairs of positive definite density matrices. Bibliography: 15 titles.
Keywords: scaling of matrices, scaling of quantum channels, Schrödinger's bridge problem, fixed points.
@article{SM_2017_208_11_a6,
     author = {Sh. Friedland},
     title = {On {Schr\"odinger's} bridge problem},
     journal = {Sbornik. Mathematics},
     pages = {1705--1721},
     publisher = {mathdoc},
     volume = {208},
     number = {11},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_11_a6/}
}
TY  - JOUR
AU  - Sh. Friedland
TI  - On Schr\"odinger's bridge problem
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 1705
EP  - 1721
VL  - 208
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_11_a6/
LA  - en
ID  - SM_2017_208_11_a6
ER  - 
%0 Journal Article
%A Sh. Friedland
%T On Schr\"odinger's bridge problem
%J Sbornik. Mathematics
%D 2017
%P 1705-1721
%V 208
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2017_208_11_a6/
%G en
%F SM_2017_208_11_a6
Sh. Friedland. On Schr\"odinger's bridge problem. Sbornik. Mathematics, Tome 208 (2017) no. 11, pp. 1705-1721. http://geodesic.mathdoc.fr/item/SM_2017_208_11_a6/