@article{SM_2017_208_11_a4,
author = {I. E. Kaporin},
title = {Bounding the restricted isometry constants for a~tight frame},
journal = {Sbornik. Mathematics},
pages = {1646--1660},
year = {2017},
volume = {208},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_11_a4/}
}
I. E. Kaporin. Bounding the restricted isometry constants for a tight frame. Sbornik. Mathematics, Tome 208 (2017) no. 11, pp. 1646-1660. http://geodesic.mathdoc.fr/item/SM_2017_208_11_a4/
[1] B. S. Kashin, V. N. Temlyakov, “A remark on compressed sensing”, Math. Notes, 82:6 (2007), 748–755 | DOI | DOI | MR | Zbl
[2] S. Foucart, H. Rauhut, A mathematical introduction to compressive sensing, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, New York, 2013, xviii+625 pp. | DOI | MR | Zbl
[3] Finite frames. Theory and applications, Appl. Numer. Harmon. Anal., eds. P. G. Casazza, G. Kutyniok, Birkhäuser/Springer, New York, 2013, xvi+483 pp. | DOI | MR | Zbl
[4] Guangwu Xu, Zhiqiang Xu, “Compressed sensing matrices from Fourier matrices”, IEEE Trans. Inform. Theory, 61:1 (2015), 469–478 | DOI | MR | Zbl
[5] B. Bah, J. Tanner, “Improved bounds on restricted isometry constants for Gaussian matrices”, SIAM J. Matrix Anal. Appl., 31:5 (2010), 2882–2898 | DOI | MR | Zbl
[6] O. James, “Revisiting the RIP of real and complex Gaussian sensing matrices through RIV framework”, Wireless Personal Communications, 87:2 (2016), 513–526 | DOI
[7] S. Sarvotham, Bounds for optimal compressed sensing matrices and practical reconstruction schemes, thesis, Rice Univ., Houston, TX, 2008, xi+135 pp.
[8] S. Sarvotham, R. G. Baraniuk, Deterministic bounds for restricted isometry of compressed sensing matrices, 2011, arXiv: 1103.3316v2
[9] I. E. Kaporin, “Deterministic bounds for restricted isometry in compressed sensing matrices”, Dokl. Math., 93:3 (2016), 273–275 | DOI | MR | Zbl
[10] I. E. Kaporin, “Kharakterizatsiya svoistva ogranichennoi izometrii matrits szhatogo izmereniya cherez K-chislo obuslovlennosti”, Optimizatsiya i prilozheniya, 4, VTs RAN, M., 2015, 131–146
[11] R. C. Thompson, “Principal submatrices. V. Some results concerning principal submatrices of arbitrary matrices”, J. Res. Nat. Bur. Standards Sect. B, 72B:2 (1968), 115–125 | DOI | MR | Zbl
[12] R. C. Thompson, “Principal submatrices of normal and Hermitian matrices”, Illinois J. Math., 10:2 (1966), 296–308 | MR | Zbl
[13] G. Szegő, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, 4th ed., Amer. Math. Soc., Providence, RI, 1975, xiii+432 pp. | MR | Zbl | Zbl
[14] D. S. Moak, E. B. Saff, R. S. Varga, “On the zeros of Jacobi polynomials $P_n^{(\alpha_n,\beta_n)}(x)$”, Trans. Amer. Math. Soc., 249:1 (1979), 159–162 | DOI | MR | Zbl
[15] M. E. H. Ismail, Xin Li, “Bound on the extreme zeros of orthogonal polynomials”, Proc. Amer. Math. Soc., 115:1 (1992), 131–140 | DOI | MR | Zbl
[16] G. Szegö, “Inequalities for the zeros of Legendre polynomials and related functions”, Trans. Amer. Math. Soc., 39:1 (1936), 1–17 | DOI | MR | Zbl
[17] P. G. Casazza, M. Fickus, D. G. Mixon, J. Peterson, I. Smalyanau, “Every Hilbert space frame has a Naimark complement”, J. Math. Anal. Appl., 406:1 (2013), 111–119 | DOI | MR | Zbl
[18] J. I. Haas IV, P. G. Casazza, On the structures of Grassmannian frames, 2017, arXiv: math.FA/1703.01787v1