Bounding the restricted isometry constants for a tight frame
Sbornik. Mathematics, Tome 208 (2017) no. 11, pp. 1646-1660 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The standard restricted isometry condition for a tight frame (frequently used as a compressed sensing matrix) is considered, and deterministic lower bounds are obtained for the constants involved. These bounds depend only on the matrix sizes and sparsity level. The sharpness of the new estimates is discussed as well as their interplay with the existing compressed sensing theory. Bibliography: 18 titles.
Keywords: compressed sensing, $k$-equivolume tight frame, restricted isometry property, Jacobi polynomials, extreme roots.
@article{SM_2017_208_11_a4,
     author = {I. E. Kaporin},
     title = {Bounding the restricted isometry constants for a~tight frame},
     journal = {Sbornik. Mathematics},
     pages = {1646--1660},
     year = {2017},
     volume = {208},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_11_a4/}
}
TY  - JOUR
AU  - I. E. Kaporin
TI  - Bounding the restricted isometry constants for a tight frame
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 1646
EP  - 1660
VL  - 208
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_11_a4/
LA  - en
ID  - SM_2017_208_11_a4
ER  - 
%0 Journal Article
%A I. E. Kaporin
%T Bounding the restricted isometry constants for a tight frame
%J Sbornik. Mathematics
%D 2017
%P 1646-1660
%V 208
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2017_208_11_a4/
%G en
%F SM_2017_208_11_a4
I. E. Kaporin. Bounding the restricted isometry constants for a tight frame. Sbornik. Mathematics, Tome 208 (2017) no. 11, pp. 1646-1660. http://geodesic.mathdoc.fr/item/SM_2017_208_11_a4/

[1] B. S. Kashin, V. N. Temlyakov, “A remark on compressed sensing”, Math. Notes, 82:6 (2007), 748–755 | DOI | DOI | MR | Zbl

[2] S. Foucart, H. Rauhut, A mathematical introduction to compressive sensing, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, New York, 2013, xviii+625 pp. | DOI | MR | Zbl

[3] Finite frames. Theory and applications, Appl. Numer. Harmon. Anal., eds. P. G. Casazza, G. Kutyniok, Birkhäuser/Springer, New York, 2013, xvi+483 pp. | DOI | MR | Zbl

[4] Guangwu Xu, Zhiqiang Xu, “Compressed sensing matrices from Fourier matrices”, IEEE Trans. Inform. Theory, 61:1 (2015), 469–478 | DOI | MR | Zbl

[5] B. Bah, J. Tanner, “Improved bounds on restricted isometry constants for Gaussian matrices”, SIAM J. Matrix Anal. Appl., 31:5 (2010), 2882–2898 | DOI | MR | Zbl

[6] O. James, “Revisiting the RIP of real and complex Gaussian sensing matrices through RIV framework”, Wireless Personal Communications, 87:2 (2016), 513–526 | DOI

[7] S. Sarvotham, Bounds for optimal compressed sensing matrices and practical reconstruction schemes, thesis, Rice Univ., Houston, TX, 2008, xi+135 pp.

[8] S. Sarvotham, R. G. Baraniuk, Deterministic bounds for restricted isometry of compressed sensing matrices, 2011, arXiv: 1103.3316v2

[9] I. E. Kaporin, “Deterministic bounds for restricted isometry in compressed sensing matrices”, Dokl. Math., 93:3 (2016), 273–275 | DOI | MR | Zbl

[10] I. E. Kaporin, “Kharakterizatsiya svoistva ogranichennoi izometrii matrits szhatogo izmereniya cherez K-chislo obuslovlennosti”, Optimizatsiya i prilozheniya, 4, VTs RAN, M., 2015, 131–146

[11] R. C. Thompson, “Principal submatrices. V. Some results concerning principal submatrices of arbitrary matrices”, J. Res. Nat. Bur. Standards Sect. B, 72B:2 (1968), 115–125 | DOI | MR | Zbl

[12] R. C. Thompson, “Principal submatrices of normal and Hermitian matrices”, Illinois J. Math., 10:2 (1966), 296–308 | MR | Zbl

[13] G. Szegő, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, 4th ed., Amer. Math. Soc., Providence, RI, 1975, xiii+432 pp. | MR | Zbl | Zbl

[14] D. S. Moak, E. B. Saff, R. S. Varga, “On the zeros of Jacobi polynomials $P_n^{(\alpha_n,\beta_n)}(x)$”, Trans. Amer. Math. Soc., 249:1 (1979), 159–162 | DOI | MR | Zbl

[15] M. E. H. Ismail, Xin Li, “Bound on the extreme zeros of orthogonal polynomials”, Proc. Amer. Math. Soc., 115:1 (1992), 131–140 | DOI | MR | Zbl

[16] G. Szegö, “Inequalities for the zeros of Legendre polynomials and related functions”, Trans. Amer. Math. Soc., 39:1 (1936), 1–17 | DOI | MR | Zbl

[17] P. G. Casazza, M. Fickus, D. G. Mixon, J. Peterson, I. Smalyanau, “Every Hilbert space frame has a Naimark complement”, J. Math. Anal. Appl., 406:1 (2013), 111–119 | DOI | MR | Zbl

[18] J. I. Haas IV, P. G. Casazza, On the structures of Grassmannian frames, 2017, arXiv: math.FA/1703.01787v1