On functions of quasi-Toeplitz matrices
Sbornik. Mathematics, Tome 208 (2017) no. 11, pp. 1628-1645
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $a(z)=\sum_{i\in\mathbb Z}a_iz^i$ be a complex-valued function, defined for $|z|=1$, such that $\sum_{i=-\infty}^{+\infty} |ia_i|\infty$. Consider the semi-infinite Toeplitz matrix $T(a)=(t_{i,j})_{i,j\in\mathbb Z^+}$ associated with the symbol $a(z)$ such that $t_{i,j}=a_{j-i}$. A quasi-Toeplitz matrix associated with the symbol $a(z)$ is a matrix of the form $A=T(a)+E$ where $E=(e_{i,j})$, $\sum_{i,j\in\mathbb Z^+}|e_{i,j}|\infty$, and is called a $\mathrm{QT}$-matrix. Given a function $f(x)$ and a $\mathrm{QT}$-matrix $M$, we provide conditions under which $f(M)$ is well defined and is a $\mathrm{QT}$-matrix. Moreover, we introduce a parametrization of $\mathrm{QT}$-matrices and algorithms for the computation of $f(M)$. We treat the case where $f(x)$ is given in terms of power series and the case where $f(x)$ is defined in terms of a Cauchy integral. This analysis is also applied to finite matrices which can be written as the sum of a Toeplitz matrix and a low rank correction.
Bibliography: 27 titles.
Keywords:
matrix functions, Toeplitz matrices
Mots-clés : infinite matrices.
Mots-clés : infinite matrices.
@article{SM_2017_208_11_a3,
author = {D. A. Bini and S. Massei and B. Meini},
title = {On functions of {quasi-Toeplitz} matrices},
journal = {Sbornik. Mathematics},
pages = {1628--1645},
publisher = {mathdoc},
volume = {208},
number = {11},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_11_a3/}
}
D. A. Bini; S. Massei; B. Meini. On functions of quasi-Toeplitz matrices. Sbornik. Mathematics, Tome 208 (2017) no. 11, pp. 1628-1645. http://geodesic.mathdoc.fr/item/SM_2017_208_11_a3/