On functions of quasi-Toeplitz matrices
Sbornik. Mathematics, Tome 208 (2017) no. 11, pp. 1628-1645

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $a(z)=\sum_{i\in\mathbb Z}a_iz^i$ be a complex-valued function, defined for $|z|=1$, such that $\sum_{i=-\infty}^{+\infty} |ia_i|\infty$. Consider the semi-infinite Toeplitz matrix $T(a)=(t_{i,j})_{i,j\in\mathbb Z^+}$ associated with the symbol $a(z)$ such that $t_{i,j}=a_{j-i}$. A quasi-Toeplitz matrix associated with the symbol $a(z)$ is a matrix of the form $A=T(a)+E$ where $E=(e_{i,j})$, $\sum_{i,j\in\mathbb Z^+}|e_{i,j}|\infty$, and is called a $\mathrm{QT}$-matrix. Given a function $f(x)$ and a $\mathrm{QT}$-matrix $M$, we provide conditions under which $f(M)$ is well defined and is a $\mathrm{QT}$-matrix. Moreover, we introduce a parametrization of $\mathrm{QT}$-matrices and algorithms for the computation of $f(M)$. We treat the case where $f(x)$ is given in terms of power series and the case where $f(x)$ is defined in terms of a Cauchy integral. This analysis is also applied to finite matrices which can be written as the sum of a Toeplitz matrix and a low rank correction. Bibliography: 27 titles.
Keywords: matrix functions, Toeplitz matrices
Mots-clés : infinite matrices.
@article{SM_2017_208_11_a3,
     author = {D. A. Bini and S. Massei and B. Meini},
     title = {On functions of {quasi-Toeplitz} matrices},
     journal = {Sbornik. Mathematics},
     pages = {1628--1645},
     publisher = {mathdoc},
     volume = {208},
     number = {11},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_11_a3/}
}
TY  - JOUR
AU  - D. A. Bini
AU  - S. Massei
AU  - B. Meini
TI  - On functions of quasi-Toeplitz matrices
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 1628
EP  - 1645
VL  - 208
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_11_a3/
LA  - en
ID  - SM_2017_208_11_a3
ER  - 
%0 Journal Article
%A D. A. Bini
%A S. Massei
%A B. Meini
%T On functions of quasi-Toeplitz matrices
%J Sbornik. Mathematics
%D 2017
%P 1628-1645
%V 208
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2017_208_11_a3/
%G en
%F SM_2017_208_11_a3
D. A. Bini; S. Massei; B. Meini. On functions of quasi-Toeplitz matrices. Sbornik. Mathematics, Tome 208 (2017) no. 11, pp. 1628-1645. http://geodesic.mathdoc.fr/item/SM_2017_208_11_a3/