@article{SM_2017_208_11_a2,
author = {A. B\"ottcher and C. Garoni and S. Serra-Capizzano},
title = {Exploration of {Toeplitz-like} matrices with unbounded symbols is not a~purely academic journey},
journal = {Sbornik. Mathematics},
pages = {1602--1627},
year = {2017},
volume = {208},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_11_a2/}
}
TY - JOUR AU - A. Böttcher AU - C. Garoni AU - S. Serra-Capizzano TI - Exploration of Toeplitz-like matrices with unbounded symbols is not a purely academic journey JO - Sbornik. Mathematics PY - 2017 SP - 1602 EP - 1627 VL - 208 IS - 11 UR - http://geodesic.mathdoc.fr/item/SM_2017_208_11_a2/ LA - en ID - SM_2017_208_11_a2 ER -
%0 Journal Article %A A. Böttcher %A C. Garoni %A S. Serra-Capizzano %T Exploration of Toeplitz-like matrices with unbounded symbols is not a purely academic journey %J Sbornik. Mathematics %D 2017 %P 1602-1627 %V 208 %N 11 %U http://geodesic.mathdoc.fr/item/SM_2017_208_11_a2/ %G en %F SM_2017_208_11_a2
A. Böttcher; C. Garoni; S. Serra-Capizzano. Exploration of Toeplitz-like matrices with unbounded symbols is not a purely academic journey. Sbornik. Mathematics, Tome 208 (2017) no. 11, pp. 1602-1627. http://geodesic.mathdoc.fr/item/SM_2017_208_11_a2/
[1] G. Szegő, “Beiträge zur Theorie der Toeplitzschen Formen. Erste Mitteilung”, Math. Z., 6:3-4 (1920), 167–202 | DOI | MR | Zbl
[2] F. Avram, “On bilinear forms in Gaussian random variables and Toeplitz matrices”, Probab. Theory Related Fields, 79:1 (1988), 37–45 | DOI | MR | Zbl
[3] S. V. Parter, “On the distribution of the singular values of Toeplitz matrices”, Linear Algebra Appl., 80 (1986), 115–130 | DOI | MR | Zbl
[4] A. Böttcher, B. Silbermann, Introduction to large truncated Toeplitz matrices, Universitext, Springer-Verlag, New York, 1999, xii+258 pp. | DOI | MR | Zbl
[5] H. Widom, “Asymptotic behavior of block Toeplitz matrices and determinants. II”, Advances in Math., 21:1 (1976), 1–29 | DOI | MR | Zbl
[6] A. Böttcher, B. Silbermann, Analysis of Toeplitz operators, Springer Monogr. Math., 2nd ed., Springer-Verlag, Berlin, 2006, xiv+665 pp. | MR | Zbl
[7] E. E. Tyrtyshnikov, “A unifying approach to some old and new theorems on distribution and clustering”, Linear Algebra Appl., 232 (1996), 1–43 | DOI | MR | Zbl
[8] E. E. Tyrtyshnikov, N. L. Zamarashkin, “Spectra of multilevel Toeplitz matrices: advanced theory via simple matrix relationships”, Linear Algebra Appl., 270:1-3 (1998), 15–27 | DOI | MR | Zbl
[9] P. Tilli, “A note on the spectral distribution of Toeplitz matrices”, Linear and Multilinear Algebra, 45:2-3 (1998), 147–159 | DOI | MR | Zbl
[10] R. V. Duduchava, “O diskretnykh uravneniyakh Vinera–Khopfa”, in Russian, Trudy Tbilisskogo matem. in-ta AN Gruz. SSR, 50 (1975), 42–59 | MR | Zbl
[11] P. Deift, A. Its, I. Krasovsky, “Toeplitz matrices and Toeplitz determinants under the impetus of the Ising model: some history and some recent results”, Comm. Pure Appl. Math., 66:9 (2013), 1360–1438 | DOI | MR | Zbl
[12] M. E. Fisher, R. E. Hartwig, “Toeplitz determinants: some applications, theorems, and conjectures”, Stochastic Processes in Chemical Physics, Adv. Chem. Phys., 15, John Wiley Sons, Inc., Hoboken, NJ, 1969, 333–353 | DOI
[13] E. Basor, “Asymptotic formulas for Toeplitz determinants”, Trans. Amer. Math. Soc., 239 (1978), 33–65 | DOI | MR | Zbl
[14] A. Böttcher, B. Silbermann, “Toeplitz matrices and determinants with Fisher–Hartwig symbols”, J. Funct. Anal., 63:2 (1985), 178–214 | DOI | MR | Zbl
[15] T. Ehrhardt, B. Silbermann, “Toeplitz determinants with one Fisher–Hartwig singularity”, J. Funct. Anal., 148:1 (1997), 229–256 | DOI | MR | Zbl
[16] H. Widom, “Toeplitz determinants with singular generating functions”, Amer. J. Math., 95:2 (1973), 333–383 | DOI | MR | Zbl
[17] P. Tilli, “Locally Toeplitz sequences: spectral properties and applications”, Linear Algebra Appl., 278:1-3 (1998), 91–120 | DOI | MR | Zbl
[18] S. Serra Capizzano, “Generalized locally Toeplitz sequences: spectral analysis and applications to discretized partial differential equations”, Linear Algebra Appl., 366 (2003), 371–402 | DOI | MR | Zbl
[19] S. Serra-Capizzano, “The GLT class as a generalized Fourier analysis and applications”, Linear Algebra Appl., 419:1 (2006), 180–233 | DOI | MR | Zbl
[20] C. Garoni, S. Serra-Capizzano, Generalized locally Toeplitz sequences: theory and applications, v. 1, Springer, Cham, 2017, xi+312 pp. | DOI | MR | Zbl
[21] C. Garoni, S. Serra-Capizzano, “The theory of generalized locally Toeplitz sequences: a review, an extension, and a few representative applications”, Large truncated Toeplitz matrices, Toeplitz operators, and related topics, Oper. Theory Adv. Appl., 259, Birkhäuser/Springer, Cham, 2017, 353–394 pp. | DOI | MR | Zbl
[22] R. Bhatia, Matrix analysis, Grad. Texts in Math., 169, Springer-Verlag, New York, 1997, xii+347 pp. | DOI | MR | Zbl
[23] G. H. Golub, C. F. Van Loan, Matrix computations, Johns Hopkins Stud. Math. Sci., 4th ed., The Johns Hopkins Univ. Press, Baltimore, MD, 2013, xiv+756 pp. | MR | Zbl
[24] V. I. Bogachev, Measure theory, v. I, Springer-Verlag, Berlin, 2007, xviii+500 pp. | DOI | MR | Zbl
[25] H. Royden, P. M. Fitzpatrick, Real analysis, 4th ed., Prentice Hall, New York, NY, 2010, xii+505 pp. | Zbl
[26] C. Garoni, S. Serra-Capizzano, D. Sesana, “Tools for determining the asymptotic spectral distribution of non-Hermitian perturbations of Hermitian matrix-sequences and applications”, Integral Equations Operator Theory, 81:2 (2015), 213–225 | DOI | MR | Zbl
[27] L. Golinskii, S. Serra-Capizzano, “The asymptotic properties of the spectrum of nonsymmetrically perturbed Jacobi matrix sequences”, J. Approx. Theory, 144:1 (2007), 84–102 | DOI | MR | Zbl
[28] C. Garoni, S. Serra-Capizzano, “The theory of Locally Toeplitz sequences: a review, an extension, and a few representative applications”, Bol. Soc. Mat. Mex. (3), 22:2 (2016), 529–565 | DOI | MR | Zbl
[29] S. Serra Capizzano, C. Tablino Possio, “Analysis of preconditioning strategies for collocation linear systems”, Linear Algebra Appl., 369 (2003), 41–75 | DOI | MR | Zbl
[30] J. A. Cottrell, T. J. R. Hughes, Y. Bazilevs, Isogeometric analysis: toward integration of CAD and FEA, John Wiley Sons, Chichester, 2009, 355 pp. | DOI
[31] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New York, 2011, xiv+599 pp. | DOI | MR | Zbl
[32] C. Garoni, “Spectral distribution of PDE discretization matrices from Isogeometric Analysis: the case of $L^1$ coefficients and non-regular geometry”, J. Spectral Theory (in press)
[33] C. Garoni, C. Manni, S. Serra-Capizzano, D. Sesana, H. Speleers, “Spectral analysis and spectral symbol of matrices in isogeometric Galerkin methods”, Math. Comp., 86:305 (2017), 1343–1373 | DOI | MR | Zbl
[34] M. Donatelli, M. Mazza, S. Serra-Capizzano, “Spectral analysis and structure preserving preconditioners for fractional diffusion equations”, J. Comput. Phys., 307 (2016), 262–279 | DOI | MR | Zbl
[35] A. Böttcher, S. M. Grudsky, “On the condition numbers of large semi-definite Toeplitz matrices”, Linear Algebra Appl., 279:1-3 (1998), 285–301 | DOI | MR | Zbl
[36] C. Garoni, “Estimates for the minimum eigenvalue and the condition number of Hermitian (block) Toeplitz matrices”, Linear Algebra Appl., 439:3 (2013), 707–728 | DOI | MR | Zbl
[37] S. V. Parter, “On the extreme eigenvalues of Toeplitz matrices”, Trans. Amer. Math. Soc., 100:2 (1961), 263–276 | DOI | MR | Zbl
[38] O. Axelsson, G. Lindskog, “On the rate of convergence of the preconditioned conjugate gradient method”, Numer. Math., 48:5 (1986), 499–523 | DOI | MR | Zbl
[39] F. di Benedetto, G. Fiorentino, S. Serra, “C. G. preconditioning for Toeplitz matrices”, Comput. Math. Appl., 25:6 (1993), 35–45 | DOI | MR | Zbl
[40] S. Serra, “New PCG based algorithms for the solution of Hermitian Toeplitz systems”, Calcolo, 32:3-4 (1995), 153–176 | DOI | MR | Zbl