Pairs of operators with equal defect from unitarity and their relative index
Sbornik. Mathematics, Tome 208 (2017) no. 10, pp. 1523-1534

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that the $K_1$ group of a $C^*$-algebra $A$ can be defined as the homotopy classes of pairs of matrices over $A$ that have equal defect from being unitary. We also consider pairs of pseudodifferential operators, not necessarily elliptic, with symbols forming a balanced pair. A relative index is defined for such pairs of operators, and it is proved to be equal to the topological index of the pair of symbols. Bibliography: 4 titles.
Keywords: $K$-theory, elliptic operator, index.
@article{SM_2017_208_10_a5,
     author = {V. M. Manuilov},
     title = {Pairs of operators with equal defect from unitarity and their relative index},
     journal = {Sbornik. Mathematics},
     pages = {1523--1534},
     publisher = {mathdoc},
     volume = {208},
     number = {10},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_10_a5/}
}
TY  - JOUR
AU  - V. M. Manuilov
TI  - Pairs of operators with equal defect from unitarity and their relative index
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 1523
EP  - 1534
VL  - 208
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_10_a5/
LA  - en
ID  - SM_2017_208_10_a5
ER  - 
%0 Journal Article
%A V. M. Manuilov
%T Pairs of operators with equal defect from unitarity and their relative index
%J Sbornik. Mathematics
%D 2017
%P 1523-1534
%V 208
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2017_208_10_a5/
%G en
%F SM_2017_208_10_a5
V. M. Manuilov. Pairs of operators with equal defect from unitarity and their relative index. Sbornik. Mathematics, Tome 208 (2017) no. 10, pp. 1523-1534. http://geodesic.mathdoc.fr/item/SM_2017_208_10_a5/