Pairs of operators with equal defect from unitarity and their relative index
Sbornik. Mathematics, Tome 208 (2017) no. 10, pp. 1523-1534
Cet article a éte moissonné depuis la source Math-Net.Ru
We show that the $K_1$ group of a $C^*$-algebra $A$ can be defined as the homotopy classes of pairs of matrices over $A$ that have equal defect from being unitary. We also consider pairs of pseudodifferential operators, not necessarily elliptic, with symbols forming a balanced pair. A relative index is defined for such pairs of operators, and it is proved to be equal to the topological index of the pair of symbols. Bibliography: 4 titles.
Keywords:
$K$-theory, elliptic operator, index.
@article{SM_2017_208_10_a5,
author = {V. M. Manuilov},
title = {Pairs of operators with equal defect from unitarity and their relative index},
journal = {Sbornik. Mathematics},
pages = {1523--1534},
year = {2017},
volume = {208},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_10_a5/}
}
V. M. Manuilov. Pairs of operators with equal defect from unitarity and their relative index. Sbornik. Mathematics, Tome 208 (2017) no. 10, pp. 1523-1534. http://geodesic.mathdoc.fr/item/SM_2017_208_10_a5/
[1] N. Higson, “On a technical theorem of Kasparov”, J. Funct. Anal., 73:1 (1987), 107–112 | DOI | MR | Zbl
[2] G. G. Kasparov, “$K$-theory, group $C^*$-algebras, and higher signatures (conspectus)”, Novikov conjectures, index theorems and rigidity (Oberwolfach, 1993), v. 1, London Math. Soc. Lecture Note Ser., 226, Cambridge Univ. Press, Cambridge, 1995, 101–146 | DOI | MR | Zbl
[3] V. Manuilov, “Weakening idempotency in $K$-theory”, Pacific J. Math., 289:2 (2017), 381–394 ; arXiv: 1304.2650 | DOI | MR | Zbl
[4] A. Savin, B.-W. Schulze, B. Sternin, “Elliptic operators in subspaces and the eta invariant”, K-Theory, 27:3 (2002), 253–272 | DOI | MR | Zbl