Laplacians on smooth distributions
Sbornik. Mathematics, Tome 208 (2017) no. 10, pp. 1503-1522

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M$ be a compact smooth manifold equipped with a positive smooth density $\mu$ and let $H$ be a smooth distribution endowed with a fibrewise inner product $g$. We define the Laplacian $\Delta_H$ associated with $(H,\mu,g)$ and prove that it gives rise to an unbounded self-adjoint operator in $L^2(M,\mu)$. Then, assuming that $H$ generates a singular foliation $\mathscr F$, we prove that, for any function $\varphi$ in the Schwartz space $\mathscr S(\mathbb R)$, the operator $\varphi(\Delta_H)$ is a smoothing operator in the scale of longitudinal Sobolev spaces associated with $\mathscr F$. The proofs are based on pseudodifferential calculus on singular foliations, which was developed by Androulidakis and Skandalis, and on subelliptic estimates for $\Delta_H$. Bibliography: 35 titles.
Keywords: singular foliation, Laplacian, pseudodifferential calculus
Mots-clés : distribution, hypoellipticity.
@article{SM_2017_208_10_a4,
     author = {Yu. A. Kordyukov},
     title = {Laplacians on smooth distributions},
     journal = {Sbornik. Mathematics},
     pages = {1503--1522},
     publisher = {mathdoc},
     volume = {208},
     number = {10},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_10_a4/}
}
TY  - JOUR
AU  - Yu. A. Kordyukov
TI  - Laplacians on smooth distributions
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 1503
EP  - 1522
VL  - 208
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_10_a4/
LA  - en
ID  - SM_2017_208_10_a4
ER  - 
%0 Journal Article
%A Yu. A. Kordyukov
%T Laplacians on smooth distributions
%J Sbornik. Mathematics
%D 2017
%P 1503-1522
%V 208
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2017_208_10_a4/
%G en
%F SM_2017_208_10_a4
Yu. A. Kordyukov. Laplacians on smooth distributions. Sbornik. Mathematics, Tome 208 (2017) no. 10, pp. 1503-1522. http://geodesic.mathdoc.fr/item/SM_2017_208_10_a4/