Laplacians on smooth distributions
Sbornik. Mathematics, Tome 208 (2017) no. 10, pp. 1503-1522 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $M$ be a compact smooth manifold equipped with a positive smooth density $\mu$ and let $H$ be a smooth distribution endowed with a fibrewise inner product $g$. We define the Laplacian $\Delta_H$ associated with $(H,\mu,g)$ and prove that it gives rise to an unbounded self-adjoint operator in $L^2(M,\mu)$. Then, assuming that $H$ generates a singular foliation $\mathscr F$, we prove that, for any function $\varphi$ in the Schwartz space $\mathscr S(\mathbb R)$, the operator $\varphi(\Delta_H)$ is a smoothing operator in the scale of longitudinal Sobolev spaces associated with $\mathscr F$. The proofs are based on pseudodifferential calculus on singular foliations, which was developed by Androulidakis and Skandalis, and on subelliptic estimates for $\Delta_H$. Bibliography: 35 titles.
Keywords: singular foliation, Laplacian, pseudodifferential calculus
Mots-clés : distribution, hypoellipticity.
@article{SM_2017_208_10_a4,
     author = {Yu. A. Kordyukov},
     title = {Laplacians on smooth distributions},
     journal = {Sbornik. Mathematics},
     pages = {1503--1522},
     year = {2017},
     volume = {208},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_10_a4/}
}
TY  - JOUR
AU  - Yu. A. Kordyukov
TI  - Laplacians on smooth distributions
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 1503
EP  - 1522
VL  - 208
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_10_a4/
LA  - en
ID  - SM_2017_208_10_a4
ER  - 
%0 Journal Article
%A Yu. A. Kordyukov
%T Laplacians on smooth distributions
%J Sbornik. Mathematics
%D 2017
%P 1503-1522
%V 208
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2017_208_10_a4/
%G en
%F SM_2017_208_10_a4
Yu. A. Kordyukov. Laplacians on smooth distributions. Sbornik. Mathematics, Tome 208 (2017) no. 10, pp. 1503-1522. http://geodesic.mathdoc.fr/item/SM_2017_208_10_a4/

[1] A. Agrachev, U. Boscain, J.-P. Gauthier, F. Rossi, “The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups”, J. Funct. Anal., 256:8 (2009), 2621–2655 | DOI | MR | Zbl

[2] I. Androulidakis, G. Skandalis, “The holonomy groupoid of a singular foliation”, J. Reine Angew. Math., 2009:626 (2009), 1–37 | DOI | MR | Zbl

[3] I. Androulidakis, G. Skandalis, “Pseudodifferential calculus on a singular foliation”, J. Noncommut. Geom., 5:1 (2011), 125–152 | DOI | MR | Zbl

[4] F. Baudoin, “Sub-Laplacians and hypoelliptic operators on totally geodesic Riemannian foliations”, Geometry, analysis and dynamics on sub-Riemannian manifolds, v. I, EMS Ser. Lect. Math., Eur. Math. Soc., Zürich, 2016, 259–321 | MR | Zbl

[5] F. Baudoin, B. Kim, “The Lichnerowicz–Obata theorem on sub-Riemannian manifolds with transverse symmetries”, J. Geom. Anal., 26:1 (2016), 156–170 | DOI | MR | Zbl

[6] P. R. Chernoff, “Essential self-adjointness of powers of generators of hyperbolic equations”, J. Funct. Anal., 12:4 (1973), 401–414 | DOI | MR | Zbl

[7] A. Connes, “Sur la théorie non commutative de l'intégration”, Algèbres d'opérateurs ({S}ém., {L}es {P}lans-sur-{B}ex, 1978), Lecture Notes in Math., 725, Springer, Berlin, 1979, 19–143 | DOI | MR | Zbl

[8] J. Daniel, Xiaonan Ma, “Characteristic Laplacian in sub-Riemannian geometry”, Int. Math. Res. Not. IMRN, 2015:24 (2015), 13290–13323 | DOI | MR | Zbl

[9] M. Gordina, Th. Laetsch, “Sub-{L}aplacians on {s}ub-{R}iemannian {m}anifolds”, Potential Anal., 44:4 (2016), 811–837 | DOI | MR | Zbl

[10] M. Green, P. Griffiths, M. Kerr, “Mumford–Tate domains”, Boll. Unione Mat. Ital. (9), 3:2 (2010), 281–307 | MR | Zbl

[11] A. Hassannezhad, G. Kokarev, “Sub-Laplacian eigenvalue bounds on sub-Riemannian manifolds”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 16:4 (2016), 1049–1092 | DOI | MR | Zbl

[12] B. Helffer, F. Nier, Hypoelliptic estimates and spectral theory for Fokker–Planck operators and Witten Laplacians, Lecture Notes in Math., 1862, Springer-Verlag, Berlin, 2005, x+209 pp. | DOI | MR | Zbl

[13] L. Hörmander, “Hypoelliptic second order differential equations”, Acta Math., 119 (1967), 147–171 | DOI | MR | Zbl

[14] L. Hörmander, The analysis of linear partial differential operators, v. {III}, Grundlehren Math. Wiss., 274, Pseudo-differential operators, Springer-Verlag, Berlin, 1985, viii+525 pp. | MR | MR | Zbl

[15] J. J. Kohn, “Lectures on degenerate elliptic problems”, Pseudodifferential operator with applications (Bressanone, 1977), Liguori, Naples, 1978, 89–151 | MR | Zbl

[16] Yu. A. Kordyukov, “Functional calculus for tangentially elliptic operators on foliated manifolds”, Analysis and geometry in foliated manifolds (Santiago de Compostela, 1994), World Sci. Publ., River Edge, NJ, 1995, 113–136 | MR | Zbl

[17] Yu. A. Kordyukov, “Noncommutative spectral geometry of {R}iemannian foliations”, Manuscripta Math., 94:1 (1997), 45–73 | DOI | MR | Zbl

[18] Yu. A. Kordyukov, “Adiabatic limits and spectral geometry of foliations”, Math. Ann., 313:4 (1999), 763–783 | DOI | MR | Zbl

[19] Yu. A. Kordyukov, “The Egorov theorem for transverse Dirac-type operators on foliated manifolds”, J. Geom. Phys., 57:11 (2007), 2345–2364 | DOI | MR | Zbl

[20] Yu. A. Kordyukov, “Vanishing theorem for transverse {D}irac operators on Riemannian foliations”, Ann. Global Anal. Geom., 34:2 (2008), 195–211 | DOI | MR | Zbl

[21] Yu. A. Kordyukov, “Noncommutative geometry of foliations”, J. K-Theory, 2:2 (2008), 219–327 | DOI | MR | Zbl

[22] Yu. A. Kordyukov, “Index theory and non-commutative geometry on foliated manifolds”, Russian Math. Surveys, 64:2 (2009), 273–391 | DOI | DOI | MR | Zbl

[23] R. Montgomery, A tour of subriemannian geometries, their geodesics and applications, Math. Surveys Monogr., 91, Amer. Math. Soc., Providence, RI, 2002, xx+259 pp. | MR | Zbl

[24] L. I. Nicolaescu, “Geometric connections and geometric Dirac operators on contact manifolds”, Differential Geom. Appl., 22:3 (2005), 355–378 | DOI | MR | Zbl

[25] H. Omori, T. Kobayashi, “Global hypoellipticity of subelliptic operators on closed manifolds”, Hokkaido Math. J., 28:3 (1999), 613–633 | DOI | MR | Zbl

[26] R. Petit, “Spin$^c$-structures and Dirac operators on contact manifolds”, Differential Geom. Appl., 22:2 (2005), 229–252 | DOI | MR | Zbl

[27] G. Petronilho, “Global hypoellipticity, global solvability and normal form for a class of real vector fields on a torus and application”, Trans. Amer. Math. Soc., 363:12 (2011), 6337–6349 | DOI | MR | Zbl

[28] I. Prokhorenkov, K. Richardson, “Natural equivariant transversally elliptic Dirac operators”, Geom. Dedicata, 151 (2011), 411–429 | DOI | MR | Zbl

[29] M. Rumin, “Formes différentielles sur les variétés de contact”, J. Differential Geom., 39:2 (1994), 281–330 | DOI | MR | Zbl

[30] T. Shimoda, “Examples of globally hypoelliptic operator on special dimensional spheres without the bracket condition”, Hokkaido Math. J., 34:1 (2005), 219–235 | DOI | MR | Zbl

[31] P. Stefan, “Accessible sets, orbits, and foliations with singularities”, Proc. London Math. Soc. (3), 29:4 (1974), 699–713 | DOI | MR | Zbl

[32] H. J. Sussmann, “Orbits of families of vector fields and integrability of distributions”, Trans. Amer. Math. Soc., 180 (1973), 171–188 | DOI | MR | Zbl

[33] M. E. Taylor, Pseudodifferential operators, Princeton Mathematical Series, 34, Princeton Univ. Press, Princeton, NJ, 1981, xi+452 pp. | MR | MR | Zbl

[34] F. Trèves, Introduction to pseudodifferential and Fourier integral operators, v. 1, The University Series in Mathematics, Pseudodifferential operators, Plenum Press, New York–London, 1980, xxvii+299+xi pp. | MR | MR | Zbl | Zbl

[35] S. Vassout, “Unbounded pseudodifferential calculus on Lie groupoids”, J. Funct. Anal., 236:1 (2006), 161–200 | DOI | MR | Zbl