Trace theorem for quasi-Fuchsian groups
Sbornik. Mathematics, Tome 208 (2017) no. 10, pp. 1473-1502 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We complete the proof of the Trace Theorem in the quantized calculus for quasi-Fuchsian groups which was stated and sketched, but not fully proved, on pp. 322–325 of the book Noncommutative geometry of the first author. Bibliography: 34 titles.
Keywords: noncommutative geometry, Kleinian groups, geometric measure, singular traces.
@article{SM_2017_208_10_a3,
     author = {A. Connes and F. A. Sukochev and D. V. Zanin},
     title = {Trace theorem for {quasi-Fuchsian} groups},
     journal = {Sbornik. Mathematics},
     pages = {1473--1502},
     year = {2017},
     volume = {208},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_10_a3/}
}
TY  - JOUR
AU  - A. Connes
AU  - F. A. Sukochev
AU  - D. V. Zanin
TI  - Trace theorem for quasi-Fuchsian groups
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 1473
EP  - 1502
VL  - 208
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_10_a3/
LA  - en
ID  - SM_2017_208_10_a3
ER  - 
%0 Journal Article
%A A. Connes
%A F. A. Sukochev
%A D. V. Zanin
%T Trace theorem for quasi-Fuchsian groups
%J Sbornik. Mathematics
%D 2017
%P 1473-1502
%V 208
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2017_208_10_a3/
%G en
%F SM_2017_208_10_a3
A. Connes; F. A. Sukochev; D. V. Zanin. Trace theorem for quasi-Fuchsian groups. Sbornik. Mathematics, Tome 208 (2017) no. 10, pp. 1473-1502. http://geodesic.mathdoc.fr/item/SM_2017_208_10_a3/

[1] A. F. Beardon, The geometry of discrete groups, Grad. Texts in Math., 91, Corr. reprint of the 1983 original, Springer-Verlag, New York, 1995, xii+337 pp. | DOI | MR | MR | Zbl | Zbl

[2] L. Bers, “Simultaneous uniformization”, Bull. Amer. Math. Soc., 66:2 (1960), 94–97 | DOI | MR | MR | Zbl

[3] L. Bers, “On boundaries of Teichmüller spaces and on Kleinian groups. I”, Ann. of Math. (2), 91:3 (1970), 570–600 | DOI | MR | Zbl

[4] B. H. Bowditch, “Geometrical finiteness for hyperbolic groups”, J. Funct. Anal., 113:2 (1993), 245–317 | DOI | MR | Zbl

[5] R. Bowen, “Hausdorff dimension of quasi-circles”, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 11–25 | DOI | MR | Zbl

[6] M. Sh. Birman, M. Z. Solomyak, “Dvoinye operatornye integraly Stiltesa”, Spektralnaya teoriya i volnovye protsessy, Problemy matem. fiziki, 1, Izd-vo LGU, L., 1966, 33–67 | MR | Zbl

[7] M. Sh. Birman, M. Z. Solomyak, “Dvoinye operatornye integraly Stiltesa. II”, Spektralnaya teoriya i zadachi difraktsii, Problemy matem. fiziki, 2, Izd-vo LGU, L., 1967, 26–60 | MR | Zbl

[8] M. Sh. Birman, M. Z. Solomyak, “Dvoinye operatornye integraly Stiltesa. III. Predelnyi perekhod pod znakom integrala”, Teoriya funktsii. Spektralnaya teoriya. Rasprostranenie voln, Problemy matem. fiziki, 6, Izd-vo LGU, L., 1973, 27–53 | MR | Zbl

[9] M. Sh. Birman, M. Z. Solomyak, Spectral theory of self-adjoint operators in Hilbert space, Math. Appl. (Soviet Ser.), 5, D. Reidel Publishing Co., Dordrecht, 1987, xv+301 pp. | MR | MR | Zbl

[10] M. Sh. Birman, M. Z. Solomyak, “Double operator integrals in a Hilbert space”, Integral Equations Operator Theory, 47:2 (2003), 131–168 | DOI | MR | Zbl

[11] Ch. J. Bishop, P. W. Jones, “Hausdorff dimension and Kleinian groups”, Acta Math., 179:1 (1997), 1–39 | DOI | MR | Zbl

[12] M. Caspers, D. Potapov, F. Sukochev, D. Zanin, “Weak type estimates for the absolute value mapping”, J. Operator Theory, 73:2 (2015), 361–384 | DOI | MR | Zbl

[13] A. Connes, Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994, xiv+661 pp. | MR | Zbl

[14] J. Dixmier, “Existence de traces non normales”, C. R. Acad. Sci. Paris Sér. A-B, 262 (1966), A1107–A1108 | MR | Zbl

[15] P. G. Dodds, T. K. Dodds, B. de Pagter, F. A. Sukochev, “Lipschitz continuity of the absolute value and Riesz projections in symmetric operator spaces”, J. Funct. Anal., 148:1 (1997), 28–69 | DOI | MR | Zbl

[16] P. G. Dodds, B. de Pagter, “The non-commutative Yosida–Hewitt decomposition revisited”, Trans. Amer. Math. Soc., 364:12 (2012), 6425–6457 | DOI | MR | Zbl

[17] K. Dykema, T. Figiel, G. Weiss, M. Wodzicki, “Commutator structure of operator ideals”, Adv. Math., 185:1 (2004), 1–79 | DOI | MR | Zbl

[18] J. Elstrodt, F. Grunewald, J. Mennicke, Groups acting on hyperbolic space. Harmonic analysis and number theory, Springer Monogr. Math., Springer-Verlag, Berlin, 1998, xvi+524 pp. | DOI | MR | Zbl

[19] F. W. Gehring, J. Väisälä, “Hausdorff dimension and quasiconformal mappings”, J. London Math. Soc. (2), 6:3 (1973), 504–512 | DOI | MR | Zbl

[20] H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman spaces, Grad. Texts in Math., 199, Springer-Verlag, New York, 2000, x+286 pp. | DOI | MR | Zbl

[21] E. Hille, R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., 31, 3rd printing of the rev. ed. of 1957, Amer. Math. Soc., Providence, RI, 1974, xii+808 pp. | MR | MR | Zbl

[22] S. Katok, Fuchsian groups, Chicago Lectures in Math., Univ. of Chicago Press, Chicago, IL, 1992, x+175 pp. | MR | Zbl

[23] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces, v. II, Ergeb. Math. Grenzgeb., 97, Function spaces, Springer-Verlag, Berlin–New York, 1979, x+243 pp. | MR | Zbl

[24] S. Lord, F. Sukochev, D. Zanin, Singular traces. Theory and applications, De Gruyter Stud. Math., 46, De Gruyter, Berlin, 2013, xvi+452 pp. | MR | Zbl

[25] A. Markushevich, Theory of functions of a complex variable, v. III, 2nd ed., Chelsea Publishing Co., New York, 1977, 367 pp. | MR | MR | Zbl | Zbl

[26] B. Maskit, Kleinian groups, Grundlehren Math. Wiss., 287, Springer-Verlag, Berlin, 1988, xiv+326 pp. | MR | Zbl

[27] B. de Pagter, H. Witvliet, F. Sukochev, “Double operator integrals”, J. Funct.Anal., 192:1 (2002), 52–111 | DOI | MR | Zbl

[28] V. V. Peller, “Hankel operators in the perturbation theory of unitary and self-adjoint operators”, Funct. Anal. Appl., 19:2 (1985), 111–123 | DOI | MR | Zbl

[29] D. Potapov, F. Sukochev, “Unbounded Fredholm modules and double operator integrals”, J. Reine Angew. Math., 2009:626 (2009), 159–185 | DOI | MR | Zbl

[30] J. S. Rose, A course on group theory, Cambridge Univ. Press, Cambridge–New York–Melbourne, 1978, ix+310 pp. | MR | Zbl

[31] W. Rudin, Functional analysis, Internat. Ser. Pure Appl. Math., 2nd ed., McGraw-Hill, Inc., 1991, xviii+424 pp. | MR | MR | Zbl

[32] E. Semenov, F. Sukochev, A. Usachev, D. Zanin, “Banach limits and traces on $\mathscr{L}_{1,\infty}$”, Adv. Math., 285 (2015), 568–628 | DOI | MR | Zbl

[33] D. Sullivan, “The density at infinity of a discrete group of hyperbolic motions”, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 171–202 | DOI | MR | Zbl

[34] D. Sullivan, “Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups”, Acta Math., 153:3-4 (1984), 259–277 | DOI | MR | Zbl