Trace theorem for quasi-Fuchsian groups
Sbornik. Mathematics, Tome 208 (2017) no. 10, pp. 1473-1502

Voir la notice de l'article provenant de la source Math-Net.Ru

We complete the proof of the Trace Theorem in the quantized calculus for quasi-Fuchsian groups which was stated and sketched, but not fully proved, on pp. 322–325 of the book Noncommutative geometry of the first author. Bibliography: 34 titles.
Keywords: noncommutative geometry, Kleinian groups, geometric measure, singular traces.
@article{SM_2017_208_10_a3,
     author = {A. Connes and F. A. Sukochev and D. V. Zanin},
     title = {Trace theorem for {quasi-Fuchsian} groups},
     journal = {Sbornik. Mathematics},
     pages = {1473--1502},
     publisher = {mathdoc},
     volume = {208},
     number = {10},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_10_a3/}
}
TY  - JOUR
AU  - A. Connes
AU  - F. A. Sukochev
AU  - D. V. Zanin
TI  - Trace theorem for quasi-Fuchsian groups
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 1473
EP  - 1502
VL  - 208
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_10_a3/
LA  - en
ID  - SM_2017_208_10_a3
ER  - 
%0 Journal Article
%A A. Connes
%A F. A. Sukochev
%A D. V. Zanin
%T Trace theorem for quasi-Fuchsian groups
%J Sbornik. Mathematics
%D 2017
%P 1473-1502
%V 208
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2017_208_10_a3/
%G en
%F SM_2017_208_10_a3
A. Connes; F. A. Sukochev; D. V. Zanin. Trace theorem for quasi-Fuchsian groups. Sbornik. Mathematics, Tome 208 (2017) no. 10, pp. 1473-1502. http://geodesic.mathdoc.fr/item/SM_2017_208_10_a3/