Mapping degrees between spherical $3$-manifolds
Sbornik. Mathematics, Tome 208 (2017) no. 10, pp. 1449-1472 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $D(M,N)$ be the set of integers that can be realized as the degree of a map between two closed connected orientable manifolds $M$ and $N$ of the same dimension. For closed $3$-manifolds $M$ and $N$ with $S^3$-geometry, every such degree $\operatorname{deg} f\equiv \overline {\operatorname{deg}}\psi \mod |\pi_1(N)|$ where $0\le \overline {\operatorname{deg}}\psi <|\pi_1(N)|$ and $\overline {\operatorname{deg}}\psi$ only depends on the induced homomorphism $\psi=f_{\pi}$ on the fundamental group. In this paper, we calculate the set $\{\overline{\operatorname{deg}}\psi\}$ explicitly when $\psi$ is surjective and then we show how to determine $\overline{\operatorname{deg}}(\psi)$ for arbitrary homomorphisms. This leads to the determination of the set $D(M,N)$. Bibliography: 22 titles.
Keywords: $3$-manifolds, mapping degrees.
@article{SM_2017_208_10_a2,
     author = {D. Gon\c{c}alves and P. Wong and X. Zhao},
     title = {Mapping degrees between spherical $3$-manifolds},
     journal = {Sbornik. Mathematics},
     pages = {1449--1472},
     year = {2017},
     volume = {208},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_10_a2/}
}
TY  - JOUR
AU  - D. Gonçalves
AU  - P. Wong
AU  - X. Zhao
TI  - Mapping degrees between spherical $3$-manifolds
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 1449
EP  - 1472
VL  - 208
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_10_a2/
LA  - en
ID  - SM_2017_208_10_a2
ER  - 
%0 Journal Article
%A D. Gonçalves
%A P. Wong
%A X. Zhao
%T Mapping degrees between spherical $3$-manifolds
%J Sbornik. Mathematics
%D 2017
%P 1449-1472
%V 208
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2017_208_10_a2/
%G en
%F SM_2017_208_10_a2
D. Gonçalves; P. Wong; X. Zhao. Mapping degrees between spherical $3$-manifolds. Sbornik. Mathematics, Tome 208 (2017) no. 10, pp. 1449-1472. http://geodesic.mathdoc.fr/item/SM_2017_208_10_a2/

[1] M. Amann, “Degrees of self-maps of simply connected manifolds”, Int. Math. Res. Not. IMRN, 2015:18 (2015), 8545–8589 | DOI | MR | Zbl

[2] M. M. Cohen, A course in simple-homotopy theory, Grad. Texts in Math., 10, Springer-Verlag, New York–Berlin, 1973, x+144 pp. | DOI | MR | Zbl

[3] P. Derbez, Hong Bin Sun, Shi Cheng Wang, “Finiteness of mapping degree sets for $3$-manifolds”, Acta Math. Sin. (Engl. Ser.), 27:5 (2011), 807–812 | MR | Zbl

[4] Yan Hong Ding, Jian Zhong Pan, “Computing degree of maps between manifolds”, Acta Math. Sin. (Engl. Ser.), 21:6 (2005), 1277–1284 | DOI | MR | Zbl

[5] Xiao Ming Du, “On self-mapping degrees of $S^3$-geometry manifolds”, Acta Math. Sin. (Engl. Ser.), 25:8 (2009), 1243–1252 | DOI | MR | Zbl

[6] Hai Bao Duan, Shi Cheng Wang, “Non-zero degree maps between $2n$-manifolds”, Acta Math. Sin. (Engl. Ser.), 20:1 (2004), 1–14 | DOI | MR | Zbl

[7] Haibao Duan, Shicheng Wang, “The degrees of maps between manifolds”, Math. Z., 244:1 (2003), 67–89 | DOI | MR | Zbl

[8] M. Golasiński, D. L. Gonçalves, “On automorphisms of split metacyclic groups”, Manuscripta Math., 128:2 (2009), 251–273 | DOI | MR | Zbl

[9] D. L. Gonçalves, J. Guaschi, The classification of the virtually cyclic subgroups of the sphere braid groups, SpringerBriefs Math., Springer, Cham, 2013, x+102 pp. | DOI | MR | Zbl

[10] D. Gonçalves, P. Wong, “Nielsen numbers of selfmaps of Sol $3$-manifolds”, Topology Appl., 159:18 (2012), 3729–3737 | DOI | MR | Zbl

[11] D. Gonçalves, P. Wong, Xuezhi Zhao, “Nielsen numbers of selfmaps of flat $3$-manifolds”, Bull. Belg. Math. Soc. Simon Stevin, 21:2 (2014), 193–222 | MR | Zbl

[12] D. Gonçalves, P. Wong, Xue Zhi Zhao, “Nielsen theory on $3$-manifolds covered by $S^2 \times \mathbb R$”, Acta Math. Sin. (Engl. Ser.), 31:4 (2015), 615–636 | DOI | MR | Zbl

[13] D. Gonçalves, P. Wong, Xuezhi Zhao, “Fixed point theory of spherical $3$-manifolds”, Topology Appl., 181 (2015), 134–149 | DOI | MR | Zbl

[14] C. Hayat-Legrand, E. Kudryavtseva, Shicheng Wang, H. Zieschang, “Degrees of self-mappings of Seifert manifolds with finite fundamental groups”, Rend. Istit. Mat. Univ. Trieste, 32, suppl. 1 (2001), 131–147 | MR | Zbl

[15] Young Min Lee, Fei Xu, “Realization of numbers as the degrees of maps between manifolds”, Acta Math. Sin. (Engl. Ser.), 26:8 (2010), 1413–1424 | DOI | MR | Zbl

[16] P. Olum, “On mappings into spaces in which certain homotopy groups vanish”, Ann. of Math. (2), 57:3 (1953), 561–574 | DOI | MR | Zbl

[17] P. Olum, “Mappings of manifolds and the notion of degree”, Ann. of Math. (2), 58:3 (1953), 458–480 | DOI | MR | Zbl

[18] Hongbin Sun, Shicheng Wang, Jianchun Wu, “Self-mapping degrees of torus bundles and torus semi-bundles”, Osaka J. Math., 47:1 (2010), 131–155 | MR | Zbl

[19] P. Scott, “The geometries of $3$-manifolds”, Bull. London Math. Soc., 15:5 (1983), 401–487 | DOI | MR | Zbl

[20] Hongbin Sun, Shicheng Wang, Jianchun Wu, Hao Zheng, “Self-mapping degrees of $3$-manifolds”, Osaka J. Math., 49:1 (2012), 247–269 | MR | Zbl

[21] S. Tomoda, P. Zvengrowski, “Remarks on the cohomology of finite fundamental groups of $3$-manifolds”, The Zieschang Gedenkschrift, Geom. Topol. Monogr., 14, Geom. Topol. Publ., Coventry, 2008, 519–556 | DOI | MR | Zbl

[22] Shicheng Wang, “Non-zero degree maps between 3-manifolds”, Proceedings of the International Congress of Mathematicians (Beijing, 2002), v. II, Higher Ed. Press, Beijing, 2002, 457–468 | MR | Zbl