Coadjoint orbits in duals of Lie algebras with admissible ideals
Sbornik. Mathematics, Tome 208 (2017) no. 10, pp. 1421-1448 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We analyze the symplectic structure of the coadjoint orbits of Lie groups with Lie algebras that contain admissible ideals. Such ideals were introduced by Pukanszky to investigate the global symplectic structure of simply connected coadjoint orbits of connected, simply connected, solvable Lie groups. Using the theory of symplectic reduction of cotangent bundles, we identify classes of coadjoint orbits which are vector bundles. This implies Pukanszky's earlier result that such orbits have a symplectic form which is the sum of the canonical form and a magnetic term. This approach also allows us to provide many of the essential details of Pukanszky's result regarding the existence of global Darboux coordinates for the simply connected coadjoint orbits of connected, simply connected solvable Lie groups. Bibliography: 26 titles.
Keywords: symplectic reduction, admissible ideals.
Mots-clés : coadjoint orbits, solvable Lie groups
@article{SM_2017_208_10_a1,
     author = {A. M. Bloch and F. Gay-Balmaz and T. S. Ratiu},
     title = {Coadjoint orbits in duals of {Lie} algebras with admissible ideals},
     journal = {Sbornik. Mathematics},
     pages = {1421--1448},
     year = {2017},
     volume = {208},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2017_208_10_a1/}
}
TY  - JOUR
AU  - A. M. Bloch
AU  - F. Gay-Balmaz
AU  - T. S. Ratiu
TI  - Coadjoint orbits in duals of Lie algebras with admissible ideals
JO  - Sbornik. Mathematics
PY  - 2017
SP  - 1421
EP  - 1448
VL  - 208
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2017_208_10_a1/
LA  - en
ID  - SM_2017_208_10_a1
ER  - 
%0 Journal Article
%A A. M. Bloch
%A F. Gay-Balmaz
%A T. S. Ratiu
%T Coadjoint orbits in duals of Lie algebras with admissible ideals
%J Sbornik. Mathematics
%D 2017
%P 1421-1448
%V 208
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2017_208_10_a1/
%G en
%F SM_2017_208_10_a1
A. M. Bloch; F. Gay-Balmaz; T. S. Ratiu. Coadjoint orbits in duals of Lie algebras with admissible ideals. Sbornik. Mathematics, Tome 208 (2017) no. 10, pp. 1421-1448. http://geodesic.mathdoc.fr/item/SM_2017_208_10_a1/

[1] R. Abraham, J. E. Marsden, Foundations of mechanics, 2nd ed., rev. and enl., Benjamin/Cummings Publishing Co., Reading, Mass., 1978, xxii+m-xvi+806 pp. | MR | Zbl

[2] D. Arnal, B. Currey, B. Dali, “Construction of canonical coordinates for exponential Lie groups”, Trans. Amer. Math. Soc., 361:12 (2009), 6283–6348 | DOI | MR | Zbl

[3] A. M. Bloch, F. Gay-Balmaz, T. S. Ratiu, “The geometric nature of the Flaschka transformation”, Comm. Math. Phys., 352:2 (2017), 457–517 | DOI | MR | Zbl

[4] J. Dieudonné, Treatise on analysis, v. III, Pure and Applied Mathematics, 10, Academic Press, New York–London, 1972, xvii+388 pp. | MR | Zbl

[5] C. Duval, J. Elhadad, G. M. Tuynman, “Pukanszky's condition and symplectic induction”, J. Differential Geom., 36:2 (1992), 331–348 | DOI | MR | Zbl

[6] H. Flaschka, “The Toda lattice. I. Existence of integrals”, Phys. Rev. B (3), 9:4 (1974), 1924–1925 | DOI | MR | Zbl

[7] H. Flaschka, “On the Toda lattice. II. Inverse-scattering solution”, Progr. Theoret. Phys., 51:3 (1974), 703–716 | DOI | MR | Zbl

[8] V. V. Gorbatsevich, A. L. Onishchik, E. B. Vinberg, Lie groups and Lie algebras, v. III, Encyclopaedia Math. Sci., 41, Structure of Lie groups and Lie algebras, Springer-Verlag, Berlin, 1994, iv+248 pp. | MR | MR | Zbl | Zbl

[9] J. Hilgert, K.-H. Neeb, Structure and geometry of Lie groups, Springer Monogr. Math., Springer, New York, 2012, x+744 pp. | DOI | MR | Zbl

[10] A. W. Knapp, Lie groups beyond an introduction, Progr. Math., 140, 2nd ed., Birkhäuser Boston, Inc., Boston, MA, 2002, xviii+812 pp. | MR | Zbl

[11] B. Kostant, “The solution to a generalized Toda lattice and representation theory”, Adv. in Math., 34:3 (1979), 195–338 | DOI | MR | Zbl

[12] A. Malcev, “On the theory of Lie groups in the large”, Matem. sb., 16(58):2 (1945), 163–190 | MR | Zbl

[13] S. V. Manakov, “Complete integrability and stochastization of discrete dynamical systems”, Soviet Physics JETP, 40:2 (1975), 269–274 | MR

[14] J. E. Marsden, G. Misiołek, J.-P. Ortega, M. Perlmutter, T. S. Ratiu, Hamiltonian reduction by stages, Lecture Notes in Math., 1913, Springer, Berlin, 2007, xvi+519 pp. | DOI | MR | Zbl

[15] J. E. Marsden, T. S. Ratiu, Introduction to mechanics and symmetry. A basic exposition of classical mechanical systems, Texts Appl. Math., 17, 2nd ed., Springer-Verlag, New York, 1999, xviii+582 pp. | DOI | MR | Zbl

[16] J. Marsden, A. Weinstein, “Reduction of symplectic manifolds with symmetry”, Rep. Math. Phys., 5:1 (1974), 121–130 | DOI | MR | Zbl

[17] I. V. Mykytyuk, “Structure of the coadjoint orbits of Lie algebras”, J. Lie Theory, 22:1 (2012), 251–268 | MR | Zbl

[18] N. V. Pedersen, “On the symplectic structure of coadjoint orbits of (solvable) Lie groups and applications. I”, Math. Ann., 281:4 (1988), 633–669 | DOI | MR | Zbl

[19] L. Pukanszky, “On the theory of exponential groups”, Trans. Amer. Math. Soc., 126:3 (1967), 487–507 | DOI | MR | Zbl

[20] L. Pukanszky, “On a property of the quantization map for the coadjoint orbits of connected Lie groups”, The orbit method in representation theory (Copenhagen, 1988), Progr. Math., 82, Birkhäuser Boston, Boston, MA, 1990, 187–211 | MR | Zbl

[21] L. Pukanszky, “On the coadjoint orbits of connected Lie groups”, Acta Sci. Math. (Szeged), 56 (1992):3-4 (1993), 347–358 | MR | Zbl

[22] R. F. Streater, “The representations of the oscillator group”, Comm. Math. Phys., 4:3 (1967), 217–236 | DOI | MR | Zbl

[23] W. W. Symes, “Hamiltonian group actions and integrable systems”, Phys. D, 1:4 (1980), 339–374 | DOI | MR | Zbl

[24] M. Toda, “Waves in nonlinear lattice”, Progr. Theor. Phys. Suppl., 45 (1970), 174–200 | DOI

[25] V. S. Varadarajan, Lie groups, Lie algebras, and their representations, Grad. Texts in Math., 102, reprint of the 1974 ed., Springer-Verlag, New York, 1984, xiii+430 pp. | DOI | MR | Zbl

[26] M. Vergne, “Polarisations”, Représentations des groupes de Lie résolubles, Monographies de la Société Mathématique de France, 4, eds. P. Bernat, N. Conze, M. Duflo, M. Lévy-Nahas, M. Raïs, P. Renouard, M. Vergne, Dunod, Paris, 1972, 47–92 | MR | Zbl