Coadjoint orbits in duals of Lie algebras with admissible ideals
Sbornik. Mathematics, Tome 208 (2017) no. 10, pp. 1421-1448
Voir la notice de l'article provenant de la source Math-Net.Ru
We analyze the symplectic structure of the coadjoint orbits of Lie groups with Lie algebras that contain admissible ideals. Such ideals were introduced by Pukanszky to investigate the global symplectic structure of simply connected coadjoint orbits of connected, simply connected, solvable Lie groups. Using the theory of symplectic reduction of cotangent bundles, we identify classes of coadjoint orbits which are vector bundles. This implies Pukanszky's earlier result that such orbits have a symplectic form which is the sum of the canonical form and a magnetic term.
This approach also allows us to provide many of the essential details of Pukanszky's result regarding the existence of global Darboux coordinates for the simply connected coadjoint orbits of connected, simply connected solvable Lie groups.
Bibliography: 26 titles.
Keywords:
symplectic reduction, admissible ideals.
Mots-clés : coadjoint orbits, solvable Lie groups
Mots-clés : coadjoint orbits, solvable Lie groups
@article{SM_2017_208_10_a1,
author = {A. M. Bloch and F. Gay-Balmaz and T. S. Ratiu},
title = {Coadjoint orbits in duals of {Lie} algebras with admissible ideals},
journal = {Sbornik. Mathematics},
pages = {1421--1448},
publisher = {mathdoc},
volume = {208},
number = {10},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_10_a1/}
}
TY - JOUR AU - A. M. Bloch AU - F. Gay-Balmaz AU - T. S. Ratiu TI - Coadjoint orbits in duals of Lie algebras with admissible ideals JO - Sbornik. Mathematics PY - 2017 SP - 1421 EP - 1448 VL - 208 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2017_208_10_a1/ LA - en ID - SM_2017_208_10_a1 ER -
A. M. Bloch; F. Gay-Balmaz; T. S. Ratiu. Coadjoint orbits in duals of Lie algebras with admissible ideals. Sbornik. Mathematics, Tome 208 (2017) no. 10, pp. 1421-1448. http://geodesic.mathdoc.fr/item/SM_2017_208_10_a1/