Mots-clés : coadjoint orbits, solvable Lie groups
@article{SM_2017_208_10_a1,
author = {A. M. Bloch and F. Gay-Balmaz and T. S. Ratiu},
title = {Coadjoint orbits in duals of {Lie} algebras with admissible ideals},
journal = {Sbornik. Mathematics},
pages = {1421--1448},
year = {2017},
volume = {208},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2017_208_10_a1/}
}
A. M. Bloch; F. Gay-Balmaz; T. S. Ratiu. Coadjoint orbits in duals of Lie algebras with admissible ideals. Sbornik. Mathematics, Tome 208 (2017) no. 10, pp. 1421-1448. http://geodesic.mathdoc.fr/item/SM_2017_208_10_a1/
[1] R. Abraham, J. E. Marsden, Foundations of mechanics, 2nd ed., rev. and enl., Benjamin/Cummings Publishing Co., Reading, Mass., 1978, xxii+m-xvi+806 pp. | MR | Zbl
[2] D. Arnal, B. Currey, B. Dali, “Construction of canonical coordinates for exponential Lie groups”, Trans. Amer. Math. Soc., 361:12 (2009), 6283–6348 | DOI | MR | Zbl
[3] A. M. Bloch, F. Gay-Balmaz, T. S. Ratiu, “The geometric nature of the Flaschka transformation”, Comm. Math. Phys., 352:2 (2017), 457–517 | DOI | MR | Zbl
[4] J. Dieudonné, Treatise on analysis, v. III, Pure and Applied Mathematics, 10, Academic Press, New York–London, 1972, xvii+388 pp. | MR | Zbl
[5] C. Duval, J. Elhadad, G. M. Tuynman, “Pukanszky's condition and symplectic induction”, J. Differential Geom., 36:2 (1992), 331–348 | DOI | MR | Zbl
[6] H. Flaschka, “The Toda lattice. I. Existence of integrals”, Phys. Rev. B (3), 9:4 (1974), 1924–1925 | DOI | MR | Zbl
[7] H. Flaschka, “On the Toda lattice. II. Inverse-scattering solution”, Progr. Theoret. Phys., 51:3 (1974), 703–716 | DOI | MR | Zbl
[8] V. V. Gorbatsevich, A. L. Onishchik, E. B. Vinberg, Lie groups and Lie algebras, v. III, Encyclopaedia Math. Sci., 41, Structure of Lie groups and Lie algebras, Springer-Verlag, Berlin, 1994, iv+248 pp. | MR | MR | Zbl | Zbl
[9] J. Hilgert, K.-H. Neeb, Structure and geometry of Lie groups, Springer Monogr. Math., Springer, New York, 2012, x+744 pp. | DOI | MR | Zbl
[10] A. W. Knapp, Lie groups beyond an introduction, Progr. Math., 140, 2nd ed., Birkhäuser Boston, Inc., Boston, MA, 2002, xviii+812 pp. | MR | Zbl
[11] B. Kostant, “The solution to a generalized Toda lattice and representation theory”, Adv. in Math., 34:3 (1979), 195–338 | DOI | MR | Zbl
[12] A. Malcev, “On the theory of Lie groups in the large”, Matem. sb., 16(58):2 (1945), 163–190 | MR | Zbl
[13] S. V. Manakov, “Complete integrability and stochastization of discrete dynamical systems”, Soviet Physics JETP, 40:2 (1975), 269–274 | MR
[14] J. E. Marsden, G. Misiołek, J.-P. Ortega, M. Perlmutter, T. S. Ratiu, Hamiltonian reduction by stages, Lecture Notes in Math., 1913, Springer, Berlin, 2007, xvi+519 pp. | DOI | MR | Zbl
[15] J. E. Marsden, T. S. Ratiu, Introduction to mechanics and symmetry. A basic exposition of classical mechanical systems, Texts Appl. Math., 17, 2nd ed., Springer-Verlag, New York, 1999, xviii+582 pp. | DOI | MR | Zbl
[16] J. Marsden, A. Weinstein, “Reduction of symplectic manifolds with symmetry”, Rep. Math. Phys., 5:1 (1974), 121–130 | DOI | MR | Zbl
[17] I. V. Mykytyuk, “Structure of the coadjoint orbits of Lie algebras”, J. Lie Theory, 22:1 (2012), 251–268 | MR | Zbl
[18] N. V. Pedersen, “On the symplectic structure of coadjoint orbits of (solvable) Lie groups and applications. I”, Math. Ann., 281:4 (1988), 633–669 | DOI | MR | Zbl
[19] L. Pukanszky, “On the theory of exponential groups”, Trans. Amer. Math. Soc., 126:3 (1967), 487–507 | DOI | MR | Zbl
[20] L. Pukanszky, “On a property of the quantization map for the coadjoint orbits of connected Lie groups”, The orbit method in representation theory (Copenhagen, 1988), Progr. Math., 82, Birkhäuser Boston, Boston, MA, 1990, 187–211 | MR | Zbl
[21] L. Pukanszky, “On the coadjoint orbits of connected Lie groups”, Acta Sci. Math. (Szeged), 56 (1992):3-4 (1993), 347–358 | MR | Zbl
[22] R. F. Streater, “The representations of the oscillator group”, Comm. Math. Phys., 4:3 (1967), 217–236 | DOI | MR | Zbl
[23] W. W. Symes, “Hamiltonian group actions and integrable systems”, Phys. D, 1:4 (1980), 339–374 | DOI | MR | Zbl
[24] M. Toda, “Waves in nonlinear lattice”, Progr. Theor. Phys. Suppl., 45 (1970), 174–200 | DOI
[25] V. S. Varadarajan, Lie groups, Lie algebras, and their representations, Grad. Texts in Math., 102, reprint of the 1974 ed., Springer-Verlag, New York, 1984, xiii+430 pp. | DOI | MR | Zbl
[26] M. Vergne, “Polarisations”, Représentations des groupes de Lie résolubles, Monographies de la Société Mathématique de France, 4, eds. P. Bernat, N. Conze, M. Duflo, M. Lévy-Nahas, M. Raïs, P. Renouard, M. Vergne, Dunod, Paris, 1972, 47–92 | MR | Zbl