A realization theorem for the Gödel-Löb provability logic
Sbornik. Mathematics, Tome 207 (2016) no. 9, pp. 1344-1360 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present a new justification logic corresponding to the Gödel-Löb provability logic $\mathsf{GL}$ and prove the realization theorem connecting these two systems in such a way that all the realizations provided in the theorem are normal. Bibliography: 9 titles.
Keywords: provability logic, realization theorem, cyclic proofs.
Mots-clés : justification logic
@article{SM_2016_207_9_a7,
     author = {D. S. Shamkanov},
     title = {A~realization theorem for the {G\"odel-L\"ob} provability logic},
     journal = {Sbornik. Mathematics},
     pages = {1344--1360},
     year = {2016},
     volume = {207},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_9_a7/}
}
TY  - JOUR
AU  - D. S. Shamkanov
TI  - A realization theorem for the Gödel-Löb provability logic
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1344
EP  - 1360
VL  - 207
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_9_a7/
LA  - en
ID  - SM_2016_207_9_a7
ER  - 
%0 Journal Article
%A D. S. Shamkanov
%T A realization theorem for the Gödel-Löb provability logic
%J Sbornik. Mathematics
%D 2016
%P 1344-1360
%V 207
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2016_207_9_a7/
%G en
%F SM_2016_207_9_a7
D. S. Shamkanov. A realization theorem for the Gödel-Löb provability logic. Sbornik. Mathematics, Tome 207 (2016) no. 9, pp. 1344-1360. http://geodesic.mathdoc.fr/item/SM_2016_207_9_a7/

[1] S. N. Artemov, “Explicit provability and constructive semantics”, Bull. Symbolic Logic, 7:1 (2001), 1–36 | DOI | MR | Zbl

[2] M. Ghari, Aspects of the joint logic of proofs and provability, PhD thesis, Isfahan Univ. of Technology, 2012 (in Persian)

[3] G. Sambin, S. Valentini, “A modal sequent calculus for a fragment of arithmetic”, Studia Logica, 39:2-3 (1980), 245–256 | DOI | MR | Zbl

[4] G. Sambin, S. Valentini, “The modal logic of provability. The sequential approach”, J. Philos. Logic, 11:3 (1982), 311–342 | DOI | MR | Zbl

[5] D. Leivant, “On the proof theory of the modal logic for arithmetic provability”, J. Symbolic Logic, 46:3 (1981), 531–538 | DOI | MR | Zbl

[6] M. Ghari, “Explicit Gödel–Löb provability logic”, Proceedings of the 42nd Annual Iranian Mathematics Conference (Rafsanjan, Iran), Vali-e-Asr Univ., 2011, 911–914

[7] R. Kuznets, Complexity issues in justification logic, PhD thesis, City Univ. of New York, New York, 2008, 336 pp. | MR

[8] D. S. Shamkanov, “Circular proofs for the Gödel–Löb provability logic”, Math. Notes, 96:4 (2014), 575–585 | DOI | DOI | MR | Zbl

[9] M. Fitting, “Realizations and LP”, Ann. Pure Appl. Logic, 161:3 (2009), 368–387 | DOI | MR | Zbl