Removable singularities of holomorphic functions
Sbornik. Mathematics, Tome 207 (2016) no. 9, pp. 1335-1343 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Several sufficient conditions for the removability of singular sets with area zero are obtained for holomorphic functions in plane domains and on Riemann surfaces, under certain metric and topological assumptions about cluster sets of these functions and the limit sets of their graphs. Bibliography: 14 titles.
Keywords: analytic set, analytic extension, removable singularities.
@article{SM_2016_207_9_a6,
     author = {E. M. Chirka},
     title = {Removable singularities of holomorphic functions},
     journal = {Sbornik. Mathematics},
     pages = {1335--1343},
     year = {2016},
     volume = {207},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_9_a6/}
}
TY  - JOUR
AU  - E. M. Chirka
TI  - Removable singularities of holomorphic functions
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1335
EP  - 1343
VL  - 207
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_9_a6/
LA  - en
ID  - SM_2016_207_9_a6
ER  - 
%0 Journal Article
%A E. M. Chirka
%T Removable singularities of holomorphic functions
%J Sbornik. Mathematics
%D 2016
%P 1335-1343
%V 207
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2016_207_9_a6/
%G en
%F SM_2016_207_9_a6
E. M. Chirka. Removable singularities of holomorphic functions. Sbornik. Mathematics, Tome 207 (2016) no. 9, pp. 1335-1343. http://geodesic.mathdoc.fr/item/SM_2016_207_9_a6/

[1] L. Ahlfors, A. Beurling, “Conformal invariants and function-theoretic null-sets”, Acta Math., 83 (1950), 101–129 | DOI | MR | Zbl

[2] A. G. Vitushkin, “The analytic capacity of sets in problems of approximation theory”, Russian Math. Surveys, 22:6 (1967), 139–200 | DOI | MR | Zbl | Zbl

[3] E. P. Dolzhenko, “O “stiranii” osobennostei analiticheskikh funktsii”, UMN, 18:4(112) (1963), 135–142 | MR | Zbl

[4] J. Garnett, Analytic capacity and measure, Lecture Notes in Math., 297, Springer-Verlag, Berlin-New York, 1972, iv+138 pp. | DOI | MR | Zbl

[5] E. F. Collingwood, A. J. Lohwater, The theory of cluster sets, Cambridge Tracts in Math. and Math. Phys., 56, Cambridge Univ. Press, Cambridge, 1966, xi+211 pp. | MR | MR | Zbl | Zbl

[6] E. M. Chirka, Complex analytic sets, Math. Appl. (Soviet Ser.), 46, Kluwer Acad. Publ., Dordrecht, 1989, xx+372 pp. | DOI | MR | MR | Zbl | Zbl

[7] W. Stepanoff, “Über totale Differenzierbarkeit”, Math. Ann., 90:3-4 (1923), 318–320 | DOI | MR | Zbl

[8] W. Stepanoff, “Sur les conditions de l'existence de la differentielle totale”, Matem. sb., 32:3 (1925), 511–527 | Zbl

[9] A. Björn, “Removable singularities for analytic functions in BMO and locally Lipschitz spaces”, Math. Z., 244:4 (2003), 805–835 | DOI | MR | Zbl

[10] E. M. Chirka, “On the $\bar\partial $-problem with $L^2$-estimates on a Riemann surface”, Proc. Steklov Inst. Math., 290:1 (2015), 264–276 | DOI | DOI | MR | Zbl

[11] N. Bruschlinsky, “Stetige Abbildungen und Bettische Gruppen der Dimensionszahlen 1 und 3”, Math. Ann., 109:1 (1934), 525–537 | DOI | MR | Zbl

[12] E. L. Stout, Polynomial convexity, Progr. Math., 261, Birhäuser Boston, Inc., Boston, MA, 2007, xii+439 pp. | MR | Zbl

[13] O. Forster, Riemannsche Flächen, Heidelberger Taschenbücher, 184, Springer-Verlag, Berlin–New York, 1977, x+223 pp. | DOI | MR | MR | Zbl

[14] Nguen Xuan Uy, “Removable sets of analytic functions satisfying a Lipschitz condition”, Ark. Mat., 17 (1979), 19–27 | DOI | MR | Zbl