@article{SM_2016_207_9_a6,
author = {E. M. Chirka},
title = {Removable singularities of holomorphic functions},
journal = {Sbornik. Mathematics},
pages = {1335--1343},
year = {2016},
volume = {207},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2016_207_9_a6/}
}
E. M. Chirka. Removable singularities of holomorphic functions. Sbornik. Mathematics, Tome 207 (2016) no. 9, pp. 1335-1343. http://geodesic.mathdoc.fr/item/SM_2016_207_9_a6/
[1] L. Ahlfors, A. Beurling, “Conformal invariants and function-theoretic null-sets”, Acta Math., 83 (1950), 101–129 | DOI | MR | Zbl
[2] A. G. Vitushkin, “The analytic capacity of sets in problems of approximation theory”, Russian Math. Surveys, 22:6 (1967), 139–200 | DOI | MR | Zbl | Zbl
[3] E. P. Dolzhenko, “O “stiranii” osobennostei analiticheskikh funktsii”, UMN, 18:4(112) (1963), 135–142 | MR | Zbl
[4] J. Garnett, Analytic capacity and measure, Lecture Notes in Math., 297, Springer-Verlag, Berlin-New York, 1972, iv+138 pp. | DOI | MR | Zbl
[5] E. F. Collingwood, A. J. Lohwater, The theory of cluster sets, Cambridge Tracts in Math. and Math. Phys., 56, Cambridge Univ. Press, Cambridge, 1966, xi+211 pp. | MR | MR | Zbl | Zbl
[6] E. M. Chirka, Complex analytic sets, Math. Appl. (Soviet Ser.), 46, Kluwer Acad. Publ., Dordrecht, 1989, xx+372 pp. | DOI | MR | MR | Zbl | Zbl
[7] W. Stepanoff, “Über totale Differenzierbarkeit”, Math. Ann., 90:3-4 (1923), 318–320 | DOI | MR | Zbl
[8] W. Stepanoff, “Sur les conditions de l'existence de la differentielle totale”, Matem. sb., 32:3 (1925), 511–527 | Zbl
[9] A. Björn, “Removable singularities for analytic functions in BMO and locally Lipschitz spaces”, Math. Z., 244:4 (2003), 805–835 | DOI | MR | Zbl
[10] E. M. Chirka, “On the $\bar\partial $-problem with $L^2$-estimates on a Riemann surface”, Proc. Steklov Inst. Math., 290:1 (2015), 264–276 | DOI | DOI | MR | Zbl
[11] N. Bruschlinsky, “Stetige Abbildungen und Bettische Gruppen der Dimensionszahlen 1 und 3”, Math. Ann., 109:1 (1934), 525–537 | DOI | MR | Zbl
[12] E. L. Stout, Polynomial convexity, Progr. Math., 261, Birhäuser Boston, Inc., Boston, MA, 2007, xii+439 pp. | MR | Zbl
[13] O. Forster, Riemannsche Flächen, Heidelberger Taschenbücher, 184, Springer-Verlag, Berlin–New York, 1977, x+223 pp. | DOI | MR | MR | Zbl
[14] Nguen Xuan Uy, “Removable sets of analytic functions satisfying a Lipschitz condition”, Ark. Mat., 17 (1979), 19–27 | DOI | MR | Zbl