Explicit formulae for Chern-Simons invariants of the twist-knot orbifolds and edge polynomials of twist knots
Sbornik. Mathematics, Tome 207 (2016) no. 9, pp. 1319-1334 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We calculate the Chern-Simons invariants of twist-knot orbifolds using the Schläfli formula for the generalized Chern-Simons function on the family of twist knot cone-manifold structures. Following the general instruction of Hilden, Lozano, and Montesinos-Amilibia, we here present concrete formulae and calculations. We use the Pythagorean Theorem, which was used by Ham, Mednykh and Petrov, to relate the complex length of the longitude and the complex distance between the two axes fixed by two generators. As an application, we calculate the Chern-Simons invariants of cyclic coverings of the hyperbolic twist-knot orbifolds. We also derive some interesting results. The explicit formulae of the $A$-polynomials of twist knots are obtained from the complex distance polynomials. Hence the edge polynomials corresponding to the edges of the Newton polygons of the $A$-polynomials of twist knots can be obtained. In particular, the number of boundary components of every incompressible surface corresponding to slope $-4n+2$ turns out to be $2$. Bibliography: 39 titles.
Keywords: twist knot, orbifold, edge polynomial.
Mots-clés : Chern-Simons invariant, $A$-polynomial
@article{SM_2016_207_9_a5,
     author = {J. Ham and J. Lee},
     title = {Explicit formulae for {Chern-Simons} invariants of the twist-knot orbifolds and edge polynomials of twist knots},
     journal = {Sbornik. Mathematics},
     pages = {1319--1334},
     year = {2016},
     volume = {207},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_9_a5/}
}
TY  - JOUR
AU  - J. Ham
AU  - J. Lee
TI  - Explicit formulae for Chern-Simons invariants of the twist-knot orbifolds and edge polynomials of twist knots
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1319
EP  - 1334
VL  - 207
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_9_a5/
LA  - en
ID  - SM_2016_207_9_a5
ER  - 
%0 Journal Article
%A J. Ham
%A J. Lee
%T Explicit formulae for Chern-Simons invariants of the twist-knot orbifolds and edge polynomials of twist knots
%J Sbornik. Mathematics
%D 2016
%P 1319-1334
%V 207
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2016_207_9_a5/
%G en
%F SM_2016_207_9_a5
J. Ham; J. Lee. Explicit formulae for Chern-Simons invariants of the twist-knot orbifolds and edge polynomials of twist knots. Sbornik. Mathematics, Tome 207 (2016) no. 9, pp. 1319-1334. http://geodesic.mathdoc.fr/item/SM_2016_207_9_a5/

[1] Shiing-Shen Chern, J. Simons, “Some cohomology classes in principal fiber bundles and their application to Riemannian geometry”, Proc. Nat. Acad. Sci. U.S.A., 68:4 (1971), 791–794 | DOI | MR | Zbl

[2] R. Meyerhoff, “Hyperbolic 3-manifolds with equal volumes but different Chern–Simons invariants”, Low-dimensional topology and Kleinian groups (Coventry/Durham, 1984), London Math. Soc. Lecture Note Ser., 112, Cambridge Univ. Press, Cambridge, 1986, 209–215 | MR | Zbl

[3] W. D. Neumann, “Combinatorics of triangulations and the Chern–Simons invariant for hyperbolic 3-manifolds”, Topology '90 (Columbus, OH, 1990), Ohio State Univ. Math. Res. Inst. Publ., 1, de Gruyter, Berlin, 1992, 243–271 | MR | Zbl

[4] W. D. Neumann, “Extended Bloch group and the Cheeger–Chern–Simons class”, Geom. Topol., 8 (2004), 413–474 | DOI | MR | Zbl

[5] Ch. K. Zickert, “The volume and Chern–Simons invariant of a representation”, Duke Math. J., 150:3 (2009), 489–532 | DOI | MR | Zbl

[6] J. Cho, J. Murakami, Y. Yokota, “The complex volumes of twist knots”, Proc. Amer. Math. Soc., 137:10 (2009), 3533–3541 | DOI | MR | Zbl

[7] J. Cho, J. Murakami, “The complex volumes of twist knots via colored Jones polynomials”, J. Knot Theory Ramifications, 19, no. 11, 1401–1421 | DOI | MR | Zbl

[8] J. Cho, H. Kim, S. Kim, “Optimistic limits of Kashaev invariants and complex volumes of hyperbolic links”, J. Knot Theory Ramifications, 23:9 (2014), 1450049, 32 pp. | DOI | MR | Zbl

[9] M. Culler, N. Dunfield, M. Goerner, J. Weeks, SnapPy http://www.math.uic.edu/t3m/SnapPy

[10] O. Goodman, Snap for hyperbolic 3-manifolds http://sourceforge.net/projects/snap-pari

[11] D. Coulson, O. A. Goodman, C. D. Hodgson, W. D. Neumann, “Computing arithmetic invariants of 3-manifolds”, Experiment. Math., 9:1 (2000), 127–152 | DOI | MR | Zbl

[12] T. Yoshida, “The $\eta$-invariant of hyperbolic 3-manifolds”, Invent. Math., 81:3 (1985), 473–514 | DOI | MR | Zbl

[13] Ji-Young Ham, A. Mednykh, V. Petrov, “Trigonometric identities and volumes of the hyperbolic twist knot cone-manifolds”, J. Knot Theory Ramifications, 23:12 (2014), 1450064, 16 pp. | DOI | MR | Zbl

[14] H. M. Hilden, M. T. Lozano, J. M. Montesinos-Amilibia, “On volumes and Chern–Simons invariants of geometric 3-manifolds”, J. Math. Sci. Univ. Tokyo, 3:3 (1996), 723–744 | MR | Zbl

[15] H. M. Hilden, M. T. Lozano, J. M. Montesinos-Amilibia, “Volumes and Chern–Simons invariants of cyclic coverings over rational knots”, Topology and Teichmüller spaces (Katinkulta, 1995), World Sci. Publ., River Edge, NJ, 1996, 31–55 | DOI | MR | Zbl

[16] P. A. Kirk, E. P. Klassen, “Chern–Simons invariants of 3-manifolds and representation spaces of knot groups”, Math. Ann., 287:2 (1990), 343–367 | DOI | MR | Zbl

[17] P. Kirk, E. Klassen, “Chern–Simons invariants of 3-manifolds decomposed along tori and the circle bundle over the representation space of $T^2$”, Comm. Math. Phys., 153:3 (1993), 521–557 | DOI | MR | Zbl

[18] N. V. Abrosimov, “On Chern–Simons invariants of geometric 3-manifolds”, Sib. elektron. matem. izv., 3 (2006), 67–70 | MR | Zbl

[19] N. V. Abrosimov, “The Chern–Simons invariants of cone-manifolds with Whitehead link singular set”, Siberian Adv. Math., 18:2 (2008), 77–85 | DOI | MR | MR | Zbl

[20] D. Cooper, C. D. Hodgson, S. P. Kerckhoff, Three-dimensional orbifolds and cone-manifolds, MSJ Memoirs, 5, Math. Soc. Japan, Tokyo, 2000, x+170 pp. | MR | Zbl

[21] W. Thurston, Geometry and topology of three-manifolds, Lecture notes, Princeton Univ., 1980 http://library.msri.org/books/gt3m

[22] S. Kojima, “Deformations of hyperbolic $3$-cone-manifolds”, J. Differential Geom., 49:3 (1998), 469–516 | MR | Zbl

[23] J. Porti, “Spherical cone structures on 2-bridge knots and links”, Kobe J. Math., 21:1-2 (2004), 61–70 | MR | Zbl

[24] H. Hilden, M. T. Lozano, J. M. Montesinos-Amilibia, “On a remarkable polyhedron geometrizing the figure eight knot cone manifolds”, J. Math. Sci. Univ. Tokyo, 2:3 (1995), 501–561 | MR | Zbl

[25] J. Porti, H. Weiss, “Deforming Euclidean cone 3-manifolds”, Geom. Topol., 11 (2007), 1507–1538 | DOI | MR | Zbl

[26] J. Hoste, P. D. Shanahan, “A formula for the A-polynomial of twist knots”, J. Knot Theory Ramifications, 13:2 (2004), 193–209 | DOI | MR | Zbl

[27] D. V. Mathews, “An explicit formula for the $A$-polynomial of twist knots”, J. Knot Theory Ramifications, 23:9 (2014), 1450044, 5 pp. | DOI | MR | Zbl

[28] D. V. Mathews, “Erratum: "An explicit formula for the $A$-polynomial of twist knots"”, J. Knot Theory Ramifications, 23:11 (2014), 1492001, 1 pp. | DOI | MR | Zbl

[29] D. Cooper, D. D. Long, “Remarks on the $A$-polynomial of a knot”, J. Knot Theory Ramifications, 5:5 (1996), 609–628 | DOI | MR | Zbl

[30] A. Hatcher, W. Thurston, “Incompressible surfaces in $2$-bridge knot complements”, Invent. Math., 79:2 (1985), 225–246 | DOI | MR | Zbl

[31] H. Schubert, “Knoten mit zwei Brücken”, Math. Z., 65 (1956), 133–170 | DOI | MR | Zbl

[32] R. Riley, “Parabolic representations of knot groups. I”, Proc. London Math. Soc. (3), 24:2 (1972), 217–242 | DOI | MR | Zbl

[33] R. Riley, “Nonabelian representations of $2$-bridge knot groups”, Quart. J. Math. Oxford Ser. (2), 35:138 (1984), 191–208 | DOI | MR | Zbl

[34] D. Cooper, D. D. Long, “The $A$-polynomial has ones in the corners”, Bull. London Math. Soc., 29:2 (1997), 231–238 | DOI | MR | Zbl

[35] D. Cooper, M. Culler, H. Gillet, D. D. Long, P. B. Shalen, “Plane curves associated to character varieties of $3$-manifolds”, Invent. Math., 118:1 (1994), 47–84 | DOI | MR | Zbl

[36] R. Meyerhoff, D. Ruberman, “Mutation and the $\eta$-invariant”, J. Differential Geom., 31:1 (1990), 101–130 | MR | Zbl

[37] N. M. Dunfield, “Cyclic surgery, degrees of maps of character curves, and volume rigidity for hyperbolic manifolds”, Invent. Math., 136:3 (1999), 623–657 | DOI | MR | Zbl

[38] S. Francaviglia, B. Klaff, “Maximal volume representations are Fuchsian”, Geom. Dedicata, 117 (2006), 111–124 | DOI | MR | Zbl

[39] A. Mednykh, A. Rasskazov, On the structure of the canonical fundamental set for the 2-bridge link orbifolds, Sonderforschungsbereich 343, “Diskrete Structuren in der Mathematik”, Preprint, 98-062, Universität Bielefeld, 1998, 32 pp. http://www.uni-bielefeld.de/fb19/32.htm