Mots-clés : Chern-Simons invariant, $A$-polynomial
@article{SM_2016_207_9_a5,
author = {J. Ham and J. Lee},
title = {Explicit formulae for {Chern-Simons} invariants of the twist-knot orbifolds and edge polynomials of twist knots},
journal = {Sbornik. Mathematics},
pages = {1319--1334},
year = {2016},
volume = {207},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2016_207_9_a5/}
}
TY - JOUR AU - J. Ham AU - J. Lee TI - Explicit formulae for Chern-Simons invariants of the twist-knot orbifolds and edge polynomials of twist knots JO - Sbornik. Mathematics PY - 2016 SP - 1319 EP - 1334 VL - 207 IS - 9 UR - http://geodesic.mathdoc.fr/item/SM_2016_207_9_a5/ LA - en ID - SM_2016_207_9_a5 ER -
J. Ham; J. Lee. Explicit formulae for Chern-Simons invariants of the twist-knot orbifolds and edge polynomials of twist knots. Sbornik. Mathematics, Tome 207 (2016) no. 9, pp. 1319-1334. http://geodesic.mathdoc.fr/item/SM_2016_207_9_a5/
[1] Shiing-Shen Chern, J. Simons, “Some cohomology classes in principal fiber bundles and their application to Riemannian geometry”, Proc. Nat. Acad. Sci. U.S.A., 68:4 (1971), 791–794 | DOI | MR | Zbl
[2] R. Meyerhoff, “Hyperbolic 3-manifolds with equal volumes but different Chern–Simons invariants”, Low-dimensional topology and Kleinian groups (Coventry/Durham, 1984), London Math. Soc. Lecture Note Ser., 112, Cambridge Univ. Press, Cambridge, 1986, 209–215 | MR | Zbl
[3] W. D. Neumann, “Combinatorics of triangulations and the Chern–Simons invariant for hyperbolic 3-manifolds”, Topology '90 (Columbus, OH, 1990), Ohio State Univ. Math. Res. Inst. Publ., 1, de Gruyter, Berlin, 1992, 243–271 | MR | Zbl
[4] W. D. Neumann, “Extended Bloch group and the Cheeger–Chern–Simons class”, Geom. Topol., 8 (2004), 413–474 | DOI | MR | Zbl
[5] Ch. K. Zickert, “The volume and Chern–Simons invariant of a representation”, Duke Math. J., 150:3 (2009), 489–532 | DOI | MR | Zbl
[6] J. Cho, J. Murakami, Y. Yokota, “The complex volumes of twist knots”, Proc. Amer. Math. Soc., 137:10 (2009), 3533–3541 | DOI | MR | Zbl
[7] J. Cho, J. Murakami, “The complex volumes of twist knots via colored Jones polynomials”, J. Knot Theory Ramifications, 19, no. 11, 1401–1421 | DOI | MR | Zbl
[8] J. Cho, H. Kim, S. Kim, “Optimistic limits of Kashaev invariants and complex volumes of hyperbolic links”, J. Knot Theory Ramifications, 23:9 (2014), 1450049, 32 pp. | DOI | MR | Zbl
[9] M. Culler, N. Dunfield, M. Goerner, J. Weeks, SnapPy http://www.math.uic.edu/t3m/SnapPy
[10] O. Goodman, Snap for hyperbolic 3-manifolds http://sourceforge.net/projects/snap-pari
[11] D. Coulson, O. A. Goodman, C. D. Hodgson, W. D. Neumann, “Computing arithmetic invariants of 3-manifolds”, Experiment. Math., 9:1 (2000), 127–152 | DOI | MR | Zbl
[12] T. Yoshida, “The $\eta$-invariant of hyperbolic 3-manifolds”, Invent. Math., 81:3 (1985), 473–514 | DOI | MR | Zbl
[13] Ji-Young Ham, A. Mednykh, V. Petrov, “Trigonometric identities and volumes of the hyperbolic twist knot cone-manifolds”, J. Knot Theory Ramifications, 23:12 (2014), 1450064, 16 pp. | DOI | MR | Zbl
[14] H. M. Hilden, M. T. Lozano, J. M. Montesinos-Amilibia, “On volumes and Chern–Simons invariants of geometric 3-manifolds”, J. Math. Sci. Univ. Tokyo, 3:3 (1996), 723–744 | MR | Zbl
[15] H. M. Hilden, M. T. Lozano, J. M. Montesinos-Amilibia, “Volumes and Chern–Simons invariants of cyclic coverings over rational knots”, Topology and Teichmüller spaces (Katinkulta, 1995), World Sci. Publ., River Edge, NJ, 1996, 31–55 | DOI | MR | Zbl
[16] P. A. Kirk, E. P. Klassen, “Chern–Simons invariants of 3-manifolds and representation spaces of knot groups”, Math. Ann., 287:2 (1990), 343–367 | DOI | MR | Zbl
[17] P. Kirk, E. Klassen, “Chern–Simons invariants of 3-manifolds decomposed along tori and the circle bundle over the representation space of $T^2$”, Comm. Math. Phys., 153:3 (1993), 521–557 | DOI | MR | Zbl
[18] N. V. Abrosimov, “On Chern–Simons invariants of geometric 3-manifolds”, Sib. elektron. matem. izv., 3 (2006), 67–70 | MR | Zbl
[19] N. V. Abrosimov, “The Chern–Simons invariants of cone-manifolds with Whitehead link singular set”, Siberian Adv. Math., 18:2 (2008), 77–85 | DOI | MR | MR | Zbl
[20] D. Cooper, C. D. Hodgson, S. P. Kerckhoff, Three-dimensional orbifolds and cone-manifolds, MSJ Memoirs, 5, Math. Soc. Japan, Tokyo, 2000, x+170 pp. | MR | Zbl
[21] W. Thurston, Geometry and topology of three-manifolds, Lecture notes, Princeton Univ., 1980 http://library.msri.org/books/gt3m
[22] S. Kojima, “Deformations of hyperbolic $3$-cone-manifolds”, J. Differential Geom., 49:3 (1998), 469–516 | MR | Zbl
[23] J. Porti, “Spherical cone structures on 2-bridge knots and links”, Kobe J. Math., 21:1-2 (2004), 61–70 | MR | Zbl
[24] H. Hilden, M. T. Lozano, J. M. Montesinos-Amilibia, “On a remarkable polyhedron geometrizing the figure eight knot cone manifolds”, J. Math. Sci. Univ. Tokyo, 2:3 (1995), 501–561 | MR | Zbl
[25] J. Porti, H. Weiss, “Deforming Euclidean cone 3-manifolds”, Geom. Topol., 11 (2007), 1507–1538 | DOI | MR | Zbl
[26] J. Hoste, P. D. Shanahan, “A formula for the A-polynomial of twist knots”, J. Knot Theory Ramifications, 13:2 (2004), 193–209 | DOI | MR | Zbl
[27] D. V. Mathews, “An explicit formula for the $A$-polynomial of twist knots”, J. Knot Theory Ramifications, 23:9 (2014), 1450044, 5 pp. | DOI | MR | Zbl
[28] D. V. Mathews, “Erratum: "An explicit formula for the $A$-polynomial of twist knots"”, J. Knot Theory Ramifications, 23:11 (2014), 1492001, 1 pp. | DOI | MR | Zbl
[29] D. Cooper, D. D. Long, “Remarks on the $A$-polynomial of a knot”, J. Knot Theory Ramifications, 5:5 (1996), 609–628 | DOI | MR | Zbl
[30] A. Hatcher, W. Thurston, “Incompressible surfaces in $2$-bridge knot complements”, Invent. Math., 79:2 (1985), 225–246 | DOI | MR | Zbl
[31] H. Schubert, “Knoten mit zwei Brücken”, Math. Z., 65 (1956), 133–170 | DOI | MR | Zbl
[32] R. Riley, “Parabolic representations of knot groups. I”, Proc. London Math. Soc. (3), 24:2 (1972), 217–242 | DOI | MR | Zbl
[33] R. Riley, “Nonabelian representations of $2$-bridge knot groups”, Quart. J. Math. Oxford Ser. (2), 35:138 (1984), 191–208 | DOI | MR | Zbl
[34] D. Cooper, D. D. Long, “The $A$-polynomial has ones in the corners”, Bull. London Math. Soc., 29:2 (1997), 231–238 | DOI | MR | Zbl
[35] D. Cooper, M. Culler, H. Gillet, D. D. Long, P. B. Shalen, “Plane curves associated to character varieties of $3$-manifolds”, Invent. Math., 118:1 (1994), 47–84 | DOI | MR | Zbl
[36] R. Meyerhoff, D. Ruberman, “Mutation and the $\eta$-invariant”, J. Differential Geom., 31:1 (1990), 101–130 | MR | Zbl
[37] N. M. Dunfield, “Cyclic surgery, degrees of maps of character curves, and volume rigidity for hyperbolic manifolds”, Invent. Math., 136:3 (1999), 623–657 | DOI | MR | Zbl
[38] S. Francaviglia, B. Klaff, “Maximal volume representations are Fuchsian”, Geom. Dedicata, 117 (2006), 111–124 | DOI | MR | Zbl
[39] A. Mednykh, A. Rasskazov, On the structure of the canonical fundamental set for the 2-bridge link orbifolds, Sonderforschungsbereich 343, “Diskrete Structuren in der Mathematik”, Preprint, 98-062, Universität Bielefeld, 1998, 32 pp. http://www.uni-bielefeld.de/fb19/32.htm