Definability of semifields of continuous positive functions by the lattices of their subalgebras
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 207 (2016) no. 9, pp. 1267-1286
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider the lattice $\mathbb{A}(U(X))$ of subalgebras of a semifield $U(X)$ of continuous positive functions on an arbitrary topological space $X$ and its sublattice $\mathbb{A}_1(U(X))$ of subalgebras with unity. The main result of the paper is the proof of the definability of any semifield $U(X)$ both by the lattice $\mathbb{A}(U(X))$ and by its sublattice $\mathbb{A}_1(U(X))$.
Bibliography: 12 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
semifield of continuous functions, lattice of subalgebras, Hewitt space.
Mots-clés : subalgebra, isomorphism
                    
                  
                
                
                Mots-clés : subalgebra, isomorphism
@article{SM_2016_207_9_a3,
     author = {V. V. Sidorov},
     title = {Definability of semifields of continuous positive functions by the lattices of their subalgebras},
     journal = {Sbornik. Mathematics},
     pages = {1267--1286},
     publisher = {mathdoc},
     volume = {207},
     number = {9},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_9_a3/}
}
                      
                      
                    TY - JOUR AU - V. V. Sidorov TI - Definability of semifields of continuous positive functions by the lattices of their subalgebras JO - Sbornik. Mathematics PY - 2016 SP - 1267 EP - 1286 VL - 207 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2016_207_9_a3/ LA - en ID - SM_2016_207_9_a3 ER -
V. V. Sidorov. Definability of semifields of continuous positive functions by the lattices of their subalgebras. Sbornik. Mathematics, Tome 207 (2016) no. 9, pp. 1267-1286. http://geodesic.mathdoc.fr/item/SM_2016_207_9_a3/
