Definability of semifields of continuous positive functions by the lattices of their subalgebras
Sbornik. Mathematics, Tome 207 (2016) no. 9, pp. 1267-1286 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the lattice $\mathbb{A}(U(X))$ of subalgebras of a semifield $U(X)$ of continuous positive functions on an arbitrary topological space $X$ and its sublattice $\mathbb{A}_1(U(X))$ of subalgebras with unity. The main result of the paper is the proof of the definability of any semifield $U(X)$ both by the lattice $\mathbb{A}(U(X))$ and by its sublattice $\mathbb{A}_1(U(X))$. Bibliography: 12 titles.
Keywords: semifield of continuous functions, lattice of subalgebras, Hewitt space.
Mots-clés : subalgebra, isomorphism
@article{SM_2016_207_9_a3,
     author = {V. V. Sidorov},
     title = {Definability of semifields of continuous positive functions by the lattices of their subalgebras},
     journal = {Sbornik. Mathematics},
     pages = {1267--1286},
     year = {2016},
     volume = {207},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_9_a3/}
}
TY  - JOUR
AU  - V. V. Sidorov
TI  - Definability of semifields of continuous positive functions by the lattices of their subalgebras
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1267
EP  - 1286
VL  - 207
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_9_a3/
LA  - en
ID  - SM_2016_207_9_a3
ER  - 
%0 Journal Article
%A V. V. Sidorov
%T Definability of semifields of continuous positive functions by the lattices of their subalgebras
%J Sbornik. Mathematics
%D 2016
%P 1267-1286
%V 207
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2016_207_9_a3/
%G en
%F SM_2016_207_9_a3
V. V. Sidorov. Definability of semifields of continuous positive functions by the lattices of their subalgebras. Sbornik. Mathematics, Tome 207 (2016) no. 9, pp. 1267-1286. http://geodesic.mathdoc.fr/item/SM_2016_207_9_a3/

[1] J. S. Golan, Semirings and their applications, Kluwer Acad. Publ., Dordrecht, 1999, xii+381 pp. | DOI | MR | Zbl

[2] G. Grätzer, General lattice theory, Pure Appl. Math., 75, Academic Press, New York–London, 1978, xiii+381 pp. | MR | MR | Zbl | Zbl

[3] R. Engelking, General topology, Monogr. Mat., 60, PWN–Polish Scientific Publishers, Warsaw, 1977, 626 pp. | MR | MR | Zbl

[4] I. Gelfand, A. Kolmogoroff, “On rings of continuous functions on topological spaces”, Dokl. AN SSSR, 22:1 (1939), 11–15 | Zbl

[5] E. M. Vechtomov, “Specification of topological spaces by algebraic systems of continuous functions”, J. Soviet Math., 53:2 (1991), 123–147 | DOI | MR | MR | Zbl

[6] E. M. Vechtomov, “Rings of continuous functions. Algebraic aspects”, J. Math. Sci. (N. Y.), 71:2 (1994), 2364–2408 | DOI | MR | Zbl

[7] E. Hewitt, “Rings of real-valued continuous functions. I”, Trans. Amer. Math. Soc., 64:1 (1948), 45–99 | DOI | MR | Zbl

[8] E. M. Vechtomov, “Lattice of subalgebras of the ring of continuous functions and Hewitt spaces”, Math. Notes, 62:5 (1997), 575–580 | DOI | DOI | MR | Zbl

[9] V. I. Varankina, E. M. Vechtomov, I. A. Semenova, “Polukoltsa nepreryvnykh neotritsatelnykh funktsii: delimost, idealy, kongruentsii”, Fundament. i prikl. matem., 4:2 (1998), 493–510 | MR | Zbl

[10] L. Gillman, M. Jerison, Rings of continuous functions, Grad. Texts in Math., 43, Reprint of the 1960 ed., Springer-Verlag, New York–Heidelberg, 1976, xiii+300 pp. | MR | Zbl

[11] E. M. Vechtomov, V. V. Sidorov, “Isomorphisms of lattices of subalgebras of semirings of continuous nonnegative functions”, J. Math. Sci. (N. Y.), 177:6 (2011), 817–846 | DOI | MR | Zbl | Zbl

[12] E. M. Vechtomov, V. V. Sidorov, “Opredelyaemost khyuittovskikh prostranstv reshetkami podalgebr polupolei nepreryvnykh polozhitelnykh funktsii c max-slozheniem”, Tr. IMM UrO RAN, 21, no. 3, 2015, 78–88 | MR