Definability of semifields of continuous positive functions by the lattices of their subalgebras
Sbornik. Mathematics, Tome 207 (2016) no. 9, pp. 1267-1286

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the lattice $\mathbb{A}(U(X))$ of subalgebras of a semifield $U(X)$ of continuous positive functions on an arbitrary topological space $X$ and its sublattice $\mathbb{A}_1(U(X))$ of subalgebras with unity. The main result of the paper is the proof of the definability of any semifield $U(X)$ both by the lattice $\mathbb{A}(U(X))$ and by its sublattice $\mathbb{A}_1(U(X))$. Bibliography: 12 titles.
Keywords: semifield of continuous functions, lattice of subalgebras, Hewitt space.
Mots-clés : subalgebra, isomorphism
@article{SM_2016_207_9_a3,
     author = {V. V. Sidorov},
     title = {Definability of semifields of continuous positive functions by the lattices of their subalgebras},
     journal = {Sbornik. Mathematics},
     pages = {1267--1286},
     publisher = {mathdoc},
     volume = {207},
     number = {9},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_9_a3/}
}
TY  - JOUR
AU  - V. V. Sidorov
TI  - Definability of semifields of continuous positive functions by the lattices of their subalgebras
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1267
EP  - 1286
VL  - 207
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_9_a3/
LA  - en
ID  - SM_2016_207_9_a3
ER  - 
%0 Journal Article
%A V. V. Sidorov
%T Definability of semifields of continuous positive functions by the lattices of their subalgebras
%J Sbornik. Mathematics
%D 2016
%P 1267-1286
%V 207
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2016_207_9_a3/
%G en
%F SM_2016_207_9_a3
V. V. Sidorov. Definability of semifields of continuous positive functions by the lattices of their subalgebras. Sbornik. Mathematics, Tome 207 (2016) no. 9, pp. 1267-1286. http://geodesic.mathdoc.fr/item/SM_2016_207_9_a3/