The Gonchar-Stahl $\rho^2$-theorem and associated directions in the theory of rational approximations of analytic functions
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 207 (2016) no. 9, pp. 1236-1266
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The Gonchar-Stahl $\rho^2$-theorem characterizes the rate of convergence of best uniform (Chebyshev) rational approximations (with free poles) for one basic class of analytic functions. The theorem itself, modifications and generalizations of it, methods involved in its proof and other related details constitute an important subfield in the theory of rational approximations of analytic functions and complex analysis.
This paper briefly outlines the essentials of the subfield. The fundamental contributions of A. A. Gonchar and H. Stahl are at the heart of the exposition.
Bibliography: 70 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
rational approximations, equilibrium distributions, stationary compact set, $S$-property.
Mots-clés : Padé approximants, orthogonal polynomials
                    
                  
                
                
                Mots-clés : Padé approximants, orthogonal polynomials
@article{SM_2016_207_9_a2,
     author = {E. A. Rakhmanov},
     title = {The {Gonchar-Stahl} $\rho^2$-theorem and associated directions in the theory of rational approximations of analytic functions},
     journal = {Sbornik. Mathematics},
     pages = {1236--1266},
     publisher = {mathdoc},
     volume = {207},
     number = {9},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_9_a2/}
}
                      
                      
                    TY - JOUR AU - E. A. Rakhmanov TI - The Gonchar-Stahl $\rho^2$-theorem and associated directions in the theory of rational approximations of analytic functions JO - Sbornik. Mathematics PY - 2016 SP - 1236 EP - 1266 VL - 207 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2016_207_9_a2/ LA - en ID - SM_2016_207_9_a2 ER -
%0 Journal Article %A E. A. Rakhmanov %T The Gonchar-Stahl $\rho^2$-theorem and associated directions in the theory of rational approximations of analytic functions %J Sbornik. Mathematics %D 2016 %P 1236-1266 %V 207 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2016_207_9_a2/ %G en %F SM_2016_207_9_a2
E. A. Rakhmanov. The Gonchar-Stahl $\rho^2$-theorem and associated directions in the theory of rational approximations of analytic functions. Sbornik. Mathematics, Tome 207 (2016) no. 9, pp. 1236-1266. http://geodesic.mathdoc.fr/item/SM_2016_207_9_a2/
