The Gonchar-Stahl $\rho^2$-theorem and associated directions in the theory of rational approximations of analytic functions
Sbornik. Mathematics, Tome 207 (2016) no. 9, pp. 1236-1266

Voir la notice de l'article provenant de la source Math-Net.Ru

The Gonchar-Stahl $\rho^2$-theorem characterizes the rate of convergence of best uniform (Chebyshev) rational approximations (with free poles) for one basic class of analytic functions. The theorem itself, modifications and generalizations of it, methods involved in its proof and other related details constitute an important subfield in the theory of rational approximations of analytic functions and complex analysis. This paper briefly outlines the essentials of the subfield. The fundamental contributions of A. A. Gonchar and H. Stahl are at the heart of the exposition. Bibliography: 70 titles.
Keywords: rational approximations, equilibrium distributions, stationary compact set, $S$-property.
Mots-clés : Padé approximants, orthogonal polynomials
@article{SM_2016_207_9_a2,
     author = {E. A. Rakhmanov},
     title = {The {Gonchar-Stahl} $\rho^2$-theorem and associated directions in the theory of rational approximations of analytic functions},
     journal = {Sbornik. Mathematics},
     pages = {1236--1266},
     publisher = {mathdoc},
     volume = {207},
     number = {9},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_9_a2/}
}
TY  - JOUR
AU  - E. A. Rakhmanov
TI  - The Gonchar-Stahl $\rho^2$-theorem and associated directions in the theory of rational approximations of analytic functions
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1236
EP  - 1266
VL  - 207
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_9_a2/
LA  - en
ID  - SM_2016_207_9_a2
ER  - 
%0 Journal Article
%A E. A. Rakhmanov
%T The Gonchar-Stahl $\rho^2$-theorem and associated directions in the theory of rational approximations of analytic functions
%J Sbornik. Mathematics
%D 2016
%P 1236-1266
%V 207
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2016_207_9_a2/
%G en
%F SM_2016_207_9_a2
E. A. Rakhmanov. The Gonchar-Stahl $\rho^2$-theorem and associated directions in the theory of rational approximations of analytic functions. Sbornik. Mathematics, Tome 207 (2016) no. 9, pp. 1236-1266. http://geodesic.mathdoc.fr/item/SM_2016_207_9_a2/