Mots-clés : Padé approximants, orthogonal polynomials
@article{SM_2016_207_9_a2,
author = {E. A. Rakhmanov},
title = {The {Gonchar-Stahl} $\rho^2$-theorem and associated directions in the theory of rational approximations of analytic functions},
journal = {Sbornik. Mathematics},
pages = {1236--1266},
year = {2016},
volume = {207},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2016_207_9_a2/}
}
TY - JOUR AU - E. A. Rakhmanov TI - The Gonchar-Stahl $\rho^2$-theorem and associated directions in the theory of rational approximations of analytic functions JO - Sbornik. Mathematics PY - 2016 SP - 1236 EP - 1266 VL - 207 IS - 9 UR - http://geodesic.mathdoc.fr/item/SM_2016_207_9_a2/ LA - en ID - SM_2016_207_9_a2 ER -
%0 Journal Article %A E. A. Rakhmanov %T The Gonchar-Stahl $\rho^2$-theorem and associated directions in the theory of rational approximations of analytic functions %J Sbornik. Mathematics %D 2016 %P 1236-1266 %V 207 %N 9 %U http://geodesic.mathdoc.fr/item/SM_2016_207_9_a2/ %G en %F SM_2016_207_9_a2
E. A. Rakhmanov. The Gonchar-Stahl $\rho^2$-theorem and associated directions in the theory of rational approximations of analytic functions. Sbornik. Mathematics, Tome 207 (2016) no. 9, pp. 1236-1266. http://geodesic.mathdoc.fr/item/SM_2016_207_9_a2/
[1] A. I. Aptekarev, “Sharp constants for rational approximations of analytic functions”, Sb. Math., 193:1 (2002), 1–72 | DOI | DOI | MR | Zbl | Zbl
[2] A. I. Aptekarev, “Asymptotics of Hermite–Padé approximants for two functions with branch points”, Dokl. Math., 78:2 (2008), 717–719 | DOI | MR | Zbl | Zbl
[3] A. I. Aptekarev, A. B. J. Kuijlaars, W. Van Assche, “Asymptotics of Hermite–Padé rational approximants for two analytic functions with separated pairs of branch points (case of genus $0$)”, Int. Math. Res. Pap. IMRP, 2008:4 (2008), rpm007, 128 pp. | DOI | MR | Zbl
[4] A. I. Aptekarev, V. I. Buslaev, A. Martínez-Finkelshtein, S. P. Suetin, “Padé approximants, continued fractions, and orthogonal polynomials”, Russian Math. Surveys, 66:6 (2011), 1049–1131 | DOI | DOI | MR | Zbl | Zbl
[5] A. Aptekarev, P. Nevai, V. Totik, “In memoriam: Herbert Stahl August 3, 1942–April 22, 2013”, J. Approx. Theory, 183 (2014), A1–A26 | DOI | MR | Zbl
[6] A. I. Aptekarev, M. L. Yattselev, “Padé approximants for functions with branch points – strong asymptotics of Nuttall–Stahl polynomials”, Acta Math., 215:2 (2015), 217–280 | DOI | MR | Zbl
[7] G. A. Baker, Jr., P. Graves-Morris, Padé approximants, Part I. Basic theory, Encyclopedia Math. Appl., 13, Addison-Wesley Publishing Co., Reading, Mass., 1981, xx+325 pp. | MR | Zbl
[8] L. Baratchart, M. Yattselev, “Convergent interpolation to Cauchy integrals over analytic arcs with Jacobi-type weights”, Int. Math. Res. Not. IMRN, 2010:22 (2010), 4211–4275 | DOI | MR | Zbl
[9] L. Baratchart, H. Stahl, M. Yattselev, “Weighted extremal domains and best rational approximation”, Adv. Math., 229:1 (2012), 357–407 | DOI | MR | Zbl
[10] B. Beckermann, V. Kalyagin, A. C. Matos, F. Wielonsky, “Equilibrium problems for vector potentials with semidefinite interaction matrices and constrained masses”, Constr. Approx., 37:1 (2013), 101–134 | DOI | MR | Zbl
[11] V. I. Buslaev, S. P. Suetin, “Existence of compact sets with minimum capacity in problems of rational approximation of multivalued analytic functions”, Russian Math. Surveys, 69:1 (2014), 159–161 | DOI | DOI | MR | Zbl
[12] V. I. Buslaev, S. P. Suetin, “An extremal problem in potential theory”, Russian Math. Surveys, 69:5 (2014), 915–917 | DOI | DOI | MR | Zbl | Zbl
[13] V. I. Buslaev, “Convergence of $m$-point Padé approximants of a tuple of multivalued analytic functions”, Sb. Math., 206:2 (2015), 175–200 | DOI | DOI | MR | Zbl | Zbl
[14] V. I. Buslaev, “Capacity of a compact set in a logarithmic potential field”, Proc. Steklov Inst. Math., 290 (2015), 238–255 | DOI | DOI | MR | Zbl | Zbl
[15] V. I. Buslaev, S. P. Suetin, “On equilibrium problems related to the distribution of zeros of the Hermite–Padé polynomials”, Proc. Steklov Inst. Math., 290:1 (2015), 256–263 | DOI | DOI | MR | Zbl | Zbl
[16] V. I. Buslaev, S. P. Suetin, “On the existence of compacta of minimal capacity in the theory of rational approximation of multi-valued analytic functions”, J. Approx. Theory, 206 (2016), 48–67 | DOI | MR | Zbl
[17] P. Tchébycheff [Chebyshev], “Sur les fractions continues”, J. Math. Pures Appl. Sér. 2, 3 (1858), 289–323 | MR
[18] A. Deaño, D. Huybrechs, A. B. J. Kuijlaars, “Asymptotic zero distribution of complex orthogonal polynomials associated with Gaussian quadrature”, J. Approx. Theory, 162:12 (2010), 2202–2224 | DOI | MR | Zbl
[19] V. D. Erokhin, “O nailuchshem priblizhenii analiticheskikh funktsii posredstvom ratsionalnykh drobei so svobodnymi polyusami”, Dokl. AN SSSR, 128 (1959), 29–32 | MR | Zbl
[20] A. Hardy, A. B. J. Kuijlaars, “Weakly admissible vector equilibrium problems”, J. Approx. Theory, 170 (2013), 44–58 | DOI | MR | Zbl
[21] A. A. Gončar, “On the rapidity of rational approximation of continuous functions with characteristic singularities”, Math. USSR-Sb., 2:4 (1967), 561–568 | DOI | MR | Zbl
[22] A. A. Gonchar, “A local condition of single-valuedness of analytic functions”, Math. USSR-Sb., 18:1 (1972), 151–167 | DOI | MR | Zbl
[23] A. A. Gončar, “The rate of rational approximation and the property of single-valuedness of an analytic function in the neighborhood of an isolated singular point”, Math. USSR-Sb., 23:2 (1974), 254–270 | DOI | MR | Zbl
[24] A. A. Gončar, “A local condition for the single-valuedness of analytic functions of several variables”, Math. USSR-Sb., 22:2 (1974), 305–322 | DOI | MR | Zbl
[25] A. A. Gončar, “On the speed of rational approximation of some analytic functions”, Math. USSR-Sb., 34:2 (1978), 131–145 | DOI | MR | Zbl | Zbl
[26] A. A. Gonchar, “5.6. Rational approximation of analytic functions”, J. Soviet Math., 26:5 (1984), 2218–2220 | DOI | MR
[27] A. A. Gončar, G. López Lagomasino, “On Markov's theorem for multipoint Padé approximants”, Math. USSR-Sb., 34:4 (1978), 449–459 | DOI | MR | Zbl | Zbl
[28] A. A. Gonchar, E. A. Rakhmanov, “On convergence of simultaneous Padé approximants for systems of functions of Markov type”, Proc. Steklov Inst. Math., 157 (1983), 31–50 | MR | Zbl | Zbl
[29] A. A. Gonchar, “On the degree of rational approximation of analytic functions”, Proc. Steklov Inst. Math., 166 (1986), 53–61 | MR | Zbl | Zbl
[30] A. A. Gonchar, “Rational approximation of analytic functions”, Linear and complex analysis problem book, Lecture Notes in Math., 1043, Springer-Verlag, Berlin, 1984, 471–474 | DOI | MR | Zbl
[31] A. A. Gonchar, E. A. Rakhmanov, “Equilibrium measure and the distribution of zeros of extremal polynomials”, Math. USSR-Sb., 53:1 (1986), 119–130 | DOI | MR | Zbl
[32] A. A. Gonchar, E. A. Rakhmanov, “On the equilibrium problem for vector potentials”, Russian Math. Surveys, 40:4 (1985), 183–184 | DOI | MR | MR | Zbl
[33] A. A. Gonchar, “Rational approximations of analytic functions”, Nine papers from the International Congress of Mathematicians 1986, Amer. Math. Soc. Transl. Ser. 2, 147, Amer. Math. Soc., Providence, RI, 1990, 25–34 | DOI | MR | MR | Zbl
[34] A. A. Gonchar, E. A. Rakhmanov, “Equilibrium distributions and degree of rational approximation of analytic functions”, Math. USSR-Sb., 62:2 (1989), 305–348 | DOI | MR | Zbl | Zbl
[35] A. A. Gonchar, E. A. Rakhmanov, V. N. Sorokin, “Hermite–Padé approximants for systems of Markov-type functions”, Sb. Math., 188:5 (1997), 671–696 | DOI | DOI | MR | Zbl
[36] A. A. Gonchar, “Rational approximation of analytic functions”, Proc. Steklov Inst. Math., 272, suppl. 2 (2011), S44–S57 | DOI | DOI | MR | MR | Zbl | Zbl
[37] G. López Lagomasino, A. Martínez-Finkelshtein, P. Nevai, E. B. Saff, “Andrei Aleksandrovich Gonchar, November 21, 1931–October 10, 2012”, J. Approx. Theory, 172 (2013), A1–A13 | DOI | MR | Zbl
[38] A. V. Komlov, N. G. Kruzhilin, R. V. Palvelev, S. P. Suetin, “Convergence of Shafer quadratic approximants”, Russian Math. Surveys, 71:2 (2016), 373–375 | DOI | DOI | MR | Zbl
[39] A. B. J. Kuijlaars, G. L. F. Silva, “$S$-curves in polynomial external fields”, J. Approx. Theory, 191 (2015), 1–37 | DOI | MR | Zbl
[40] A. P. Magnus, “On the use of Carathéodory–Fejér method for investigating $\frac19$ and similar constants”, Nonlinear numerical methods and rational approximation (Wilrijk, 1987), Math. Appl., 43, Reidel, Dordrecht, 1988, 105–132 | MR | Zbl
[41] A. Markoff, “Deux démonstrations de la convergence de certaines fractions continues”, Acta Math., 19:1 (1895), 93–104 | DOI | MR | Zbl
[42] A. Martínez-Finkelshtein, E. Rakhmanov, “Critical measures, quadratic differentials, and weak limits of zeros of Stieltjes polynomials”, Comm. Math. Phys., 302:1 (2011), 53–111 | DOI | MR | Zbl
[43] A. Martínez-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, “Heine, Hilbert, Padé, Riemann, and Stieltjes: John Nuttall's work 25 years later”, Recent advances in orthogonal polynomials, special functions, and their applications, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012, 165–193 | DOI | MR | Zbl
[44] S. N. Mergelyan, “O nekotorykh rezultatakh v teorii ravnomernykh i nailuchshikh priblizhenii polinomami i ratsionalnymi funktsiyami”, Prilozhenie k kn.: Dzh. L. Uolsh, Interpolyatsiya i approksimatsiya ratsionalnymi funktsiyami v kompleksnoi oblasti, IL, M., 1961, 461–499 | MR
[45] D. J. Newman, “Rational approximation to $|x|$”, Michigan Math. J., 11 (1964), 11–14 | DOI | MR | Zbl
[46] J. Nuttall, R. S. Singh, “Orthogonal polynomials and Padé approximants associated with a system of arcs”, J. Approximation Theory, 21:1 (1977), 1–42 | DOI | MR | Zbl
[47] J. Nuttall, “Asymptotics of diagonal Hermite–Padé polynomials”, J. Approx. Theory, 42:4 (1984), 299–386 | DOI | MR | Zbl
[48] O. G. Parfenov, “Estimates of the singular numbers of the Carleson imbedding operator”, Math. USSR-Sb., 59:2 (1988), 497–514 | DOI | MR | Zbl
[49] E. Perevoznikova, E. Rakhmanov, Variations of the equilibrium energy and ${S}$-property of compacta of minimal capacity, Manuscript (in Russian), 1994
[50] Ch. Pommerenke, “Padé approximants and convergence in capacity”, J. Math. Anal. Appl., 41:3 (1973), 775–780 | DOI | MR | Zbl
[51] V. A. Prokhorov, “On a theorem of Adamyan, Arov, and Kreĭn”, Russian Acad. Sci. Sb. Math., 78:1 (1994), 77–90 | DOI | MR | Zbl
[52] V. A. Prokhorov, “Rational approximation of analytic functions”, Russian Acad. Sci. Sb. Math., 78:1 (1994), 139–164 | DOI | MR | Zbl
[53] V. A. Prokhorov, “On the degree of rational approximation of meromorphic functions”, Russian Acad. Sci. Sb. Math., 81:1 (1995), 1–20 | DOI | MR | Zbl
[54] E. A. Rakhmanov, S. P. Suetin, “The distribution of the zeros of the Hermite–Padé polynomials for a pair of functions forming a Nikishin system”, Sb. Math., 204:9 (2013), 1347–1390 | DOI | DOI | MR | Zbl
[55] E. A. Rakhmanov, “Orthogonal polynomials and $S$-curves”, Recent advances in orthogonal polynomials, special functions, and their applications, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012, 195–239 | DOI | MR | Zbl
[56] H. Stahl, “Extremal domains associated with an analytic function. I”, Complex Variables Theory Appl., 4:4 (1985), 311–324 | DOI | MR | Zbl
[57] H. Stahl, “Extremal domains associated with an analytic function. II”, Complex Variables Theory Appl., 4:4 (1985), 325–338 | DOI | MR | Zbl
[58] H. Stahl, “The structure of extremal domains associated with an analytic function”, Complex Variables Theory Appl., 4:4 (1985), 339–354 | DOI | MR | Zbl
[59] H. Stahl, “Orthogonal polynomials with complex-valued weight function. I”, Constr. Approx., 2:3 (1986), 225–240 | DOI | MR | Zbl
[60] H. Stahl, “Orthogonal polynomials with complex-valued weight function. II”, Constr. Approx., 2:3 (1986), 241–251 | DOI | MR | Zbl
[61] H. Stahl, “Best uniform rational approximation of $|x|$ on $[-1,1]$”, Russian Acad. Sci. Sb. Math., 76:2 (1993), 461–487 | DOI | MR | Zbl
[62] H. Stahl, V. Totik, General orthogonal polynomials, Encyclopedia Math. Appl., 43, Cambridge Univ. Press, Cambridge, 1992, xii+250 pp. | DOI | MR | Zbl
[63] K. Strebel, Quadratic differentials, Ergeb. Math. Grenzgeb. (3), 5, Springer-Verlag, Berlin, 1984, xii+184 pp. | DOI | MR | Zbl
[64] S. P. Suetin, “Distribution of the zeros of Padé polynomials and analytic continuation”, Russian Math. Surveys, 70:5 (2015), 901–951 | DOI | DOI | MR | Zbl
[65] Ch.-J. De la Vallee Poussin, “Sur les polynomes d'approximation à une variable complexe”, Bull. Acad. Roy. de Belgique Cl. Sci., 3 (1911), 199–211
[66] R. S. Varga, A. Ruttan, A. J. Carpenter, “Numerical results on best uniform rational approximation of $|x|$ on $[-1,1]$”, Math. USSR-Sb., 74:2 (1993), 271–290 | DOI | MR | Zbl | Zbl
[67] N. S. Vyacheslavov, “Approximation of the function $|x|$ by rational functions”, Math. Notes, 16:1 (1974), 680–685 | DOI | MR | Zbl
[68] J. L. Walsh, “On approximation to an analytic function by rational functions of best approximation”, Math. Z., 38:1 (1934), 163–176 | DOI | MR | Zbl
[69] J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, Amer. Math. Soc. Colloq. Publ., XX, 3rd ed., Amer. Math. Soc., Providence, RI, 1960, x+398 pp. | MR | MR | Zbl | Zbl
[70] J. L. Walsh, “Padé approximants as limits of rational functions of best approximation, real domain”, J. Approximation Theory, 11:3 (1974), 225–230 | DOI | MR | Zbl