Locally isometric coverings of the Lie group $\mathrm{SO}_0(2,1)$ with special sub-Riemannian metric
Sbornik. Mathematics, Tome 207 (2016) no. 9, pp. 1215-1235 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We find geodesics, shortest arcs, conjugate sets, cut loci, and distances on locally isometric coverings of the Lie group $\mathrm{SO}_0(2,1)$ with a left-invariant sub-Riemannian metric which is right-invariant with respect to the Lie subgroup $1\oplus \mathrm{SO}(2)\subset \mathrm{SO}_0(2,1)$. Bibliography: 18 titles.
Keywords: geodesic, geodesic orbit space, invariant sub-Riemannian metric, shortest arc, covering space, weakly symmetric space.
@article{SM_2016_207_9_a1,
     author = {V. N. Berestovskii and I. A. Zubareva},
     title = {Locally isometric coverings of the {Lie} group $\mathrm{SO}_0(2,1)$ with special {sub-Riemannian} metric},
     journal = {Sbornik. Mathematics},
     pages = {1215--1235},
     year = {2016},
     volume = {207},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_9_a1/}
}
TY  - JOUR
AU  - V. N. Berestovskii
AU  - I. A. Zubareva
TI  - Locally isometric coverings of the Lie group $\mathrm{SO}_0(2,1)$ with special sub-Riemannian metric
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1215
EP  - 1235
VL  - 207
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_9_a1/
LA  - en
ID  - SM_2016_207_9_a1
ER  - 
%0 Journal Article
%A V. N. Berestovskii
%A I. A. Zubareva
%T Locally isometric coverings of the Lie group $\mathrm{SO}_0(2,1)$ with special sub-Riemannian metric
%J Sbornik. Mathematics
%D 2016
%P 1215-1235
%V 207
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2016_207_9_a1/
%G en
%F SM_2016_207_9_a1
V. N. Berestovskii; I. A. Zubareva. Locally isometric coverings of the Lie group $\mathrm{SO}_0(2,1)$ with special sub-Riemannian metric. Sbornik. Mathematics, Tome 207 (2016) no. 9, pp. 1215-1235. http://geodesic.mathdoc.fr/item/SM_2016_207_9_a1/

[1] V. N. Berestovskii, “(Locally) shortest arcs of a special sub-Riemannian metric on the Lie group $SO_0(2,1)$”, St. Petersburg Math. J., 27:1 (2016), 1–14 | DOI | MR | Zbl | Zbl

[2] V. N. Berestovskii, I. A. Zubareva, “Subrimanovo rasstoyanie v gruppe Li $\mathrm{SO}_0(2,1)$”, Algebra i analiz, 28:4 (2016), 62–79 | MR

[3] V. N. Berestovskii, I. A. Zubareva, “Sub-Riemannian distance in the Lie groups $\mathrm{SU}(2)$ and $\mathrm{SO}(3)$”, Siberian Adv. Math., 26:2, 77–89 | DOI | DOI | MR

[4] V. N. Berestovskiǐ, I. A. Zubareva, “Geodesics and shortest arcs of a special sub-Riemannian metric on the Lie group $SL(2)$”, Siberian Math. J., 57:3 (2016), 411–424 | DOI | DOI

[5] V. N. Berestovskii, I. A. Zubareva, “Subrimanovo rasstoyanie v gruppe Li $\mathrm{SL}(2)$”, Sib. matem. zhurn. (to appear)

[6] V. N. Berestovskii, I. A. Zubareva, “Shapes of spheres of special nonholonomic left-invariant intrinsic metrics on some Lie groups”, Siberian Math. J., 42:4 (2001), 613–628 | DOI | MR | Zbl

[7] S. Sasaki, “On the differential geometry of tangent bundles of Riemannian manifolds”, Tôhoku Math. J. (2), 10:3 (1958), 338–354 | DOI | MR | Zbl

[8] S. Sasaki, “On the differential geometry of tangent bundles of Riemannian manifolds. II”, Tôhoku Math. J. (2), 14:2 (1962), 146–155 | DOI | MR | Zbl

[9] A. L. Besse, Manifolds all of whose geodesics are closed, Ergeb. Math. Grenzgeb., 93, Springer-Verlag, Berlin–New York, 1978, ix+262 pp. | MR | MR | Zbl

[10] V. N. Berestovskii, L. Guijarro, “A metric characterization of Riemannian submersions”, Ann. Global Anal. Geom., 18:6 (2000), 577–588 | DOI | MR | Zbl

[11] A. V. Pogorelov, Differential geometry, 2nd ed., Wolters–Noordhoff Publishing, Groningen, 1967, ix+171 pp. | MR | MR | Zbl | Zbl

[12] V. N. Berestovskiĭ, “Universal methods of the search of normal geodesics on Lie groups with left-invariant sub-Riemannian metric”, Siberian Math. J., 55:5 (2014), 783–791 | DOI | MR | Zbl | Zbl

[13] V. Marenitch, “Geodesic lines in $\widehat{\mathrm{SL}_{2}(R)}$ and Sol”, Novi Sad J. Math., 38:2 (2008), 91–104 | MR | Zbl

[14] A. Selberg, “Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series”, J. Indian Math. Soc. (N.S.), 20 (1956), 47–87 | MR | Zbl

[15] C. E. Kon-Fossen, “O suschestvovanii kratchaishikh putei”, Nekotorye voprosy differentsialnoi geometrii v tselom, Fizmatgiz, M., 1959, 288–303 | MR | Zbl

[16] S. Kobayashi, K. Nomizu, Foundations of differential geometry, v. I, II, Interscience Tracts in Pure and Applied Mathematics, Interscience Publishers John Wiley Sons, Inc., New York–London–Sydney, 1963, 1969, xi+329 pp., xv+470 pp. | MR | MR | MR | MR | Zbl | Zbl

[17] A. F. Beardon, The geometry of discrete groups, Grad. Texts in Math., 91, Springer-Verlag, New York, 1983, xii+337 pp. | DOI | MR | MR | Zbl | Zbl

[18] A. M. Vershik, V. Ya. Gershkovich, “Nonholonomic dynamical systems, geometry of distributions and variational problems”, Dynamical systems. VII, Encyclopaedia Math. Sci., 16, Springer, Berlin, 1994, 1–81 | MR | MR | Zbl