Properties of surjective real quadratic maps
Sbornik. Mathematics, Tome 207 (2016) no. 9, pp. 1187-1214 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The properties of surjective real quadratic maps are investigated. Sufficient conditions for the property of surjectivity to be stable under various perturbations are obtained. Examples of surjective quadratic maps whose surjectivity breaks down after an arbitrarily small perturbation are constructed. Sufficient conditions for quadratic maps to have nontrivial zeros are obtained. For a smooth even map in a neighbourhood of the origin an inverse function theorem in terms of the degree of the corresponding quadratic map is obtained. A canonical form of surjective quadratic maps from $\mathbb{R}^3$ to $\mathbb{R}^3$ is constructed. Bibliography: 27 titles.
Keywords: quadratic map, inverse function, nontrivial zero.
@article{SM_2016_207_9_a0,
     author = {A. V. Arutyunov and S. E. Zhukovskiy},
     title = {Properties of surjective real quadratic maps},
     journal = {Sbornik. Mathematics},
     pages = {1187--1214},
     year = {2016},
     volume = {207},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_9_a0/}
}
TY  - JOUR
AU  - A. V. Arutyunov
AU  - S. E. Zhukovskiy
TI  - Properties of surjective real quadratic maps
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1187
EP  - 1214
VL  - 207
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_9_a0/
LA  - en
ID  - SM_2016_207_9_a0
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%A S. E. Zhukovskiy
%T Properties of surjective real quadratic maps
%J Sbornik. Mathematics
%D 2016
%P 1187-1214
%V 207
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2016_207_9_a0/
%G en
%F SM_2016_207_9_a0
A. V. Arutyunov; S. E. Zhukovskiy. Properties of surjective real quadratic maps. Sbornik. Mathematics, Tome 207 (2016) no. 9, pp. 1187-1214. http://geodesic.mathdoc.fr/item/SM_2016_207_9_a0/

[1] G. A. Bliss, Lectures on the calculus of variations, Univ. of Chicago Press, Chicago, Ill., 1946, ix+296 pp. | MR | Zbl

[2] A. V. Arutyunov, “Smooth abnormal problems in extremum theory and analysis”, Russian Math. Surveys, 67:3 (2012), 403–457 | DOI | DOI | MR | Zbl

[3] A. A. Agrachev, “Quadratic mappings in geometric control theory”, J. Soviet Math., 51:6 (1990), 2667–2734 | DOI | MR | Zbl | Zbl

[4] M. D. Kovalev, “Geometric theory of hinged devices”, Russian Acad. Sci. Izv. Math., 44:1 (1995), 43–68 | DOI | MR | Zbl

[5] M. D. Kovalev, “Quadratic and rigidity mappings”, Proc. Steklov Inst. Math., 239 (2002), 184–201 | MR | Zbl

[6] M. D. Kovalev, “Some properties of rigidity mappings”, J. Math. Sci. (N. Y.), 149:1 (2008), 947–955 | DOI | MR | Zbl | Zbl

[7] L. L. Dines, “On the mapping of quadratic forms”, Bull. Amer. Math. Soc., 47:6 (1941), 494–498 | DOI | MR | Zbl

[8] L. L. Dines, “On the mapping of $n$ quadratic forms”, Bull. Amer. Math. Soc., 48:6 (1952), 467–471 | DOI | MR

[9] A. A. Agrachev, “Topology of quadratic maps and Hessians of smooth maps”, J. Soviet Math., 49:3 (1990), 990–1013 | DOI | MR | Zbl

[10] A. A. Agrachev, R. V. Gamkrelidze, “Quadratic maps and smooth vector-valued functions: Euler characteristics of level sets”, J. Soviet Math., 55:4 (1991), 1892–1928 | DOI | MR | Zbl | Zbl

[11] A. A. Agrachev, A. V. Sarychev, “Abnormal sub-Riemannian geodesics: Morse index and rigidity”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13:6 (1996), 635–690 | MR | Zbl

[12] A. V. Arutyunov, D. Yu. Karamzin, “Regular zeros of quadratic maps and their application”, Sb. Math., 202:6 (2011), 783–806 | DOI | DOI | MR | Zbl

[13] A. S. Matveev, “On the convexity of the images of quadratic mappings”, St. Petersburg Math. J., 10:2 (1999), 343–372 | MR | Zbl

[14] B. T. Polyak, “Convexity of quadratic transformations and its use in control and optimization”, J. Optim. Theory Appl., 99:3 (1998), 553–583 | DOI | MR | Zbl

[15] A. V. Arutyunov, “On the consistency of quadratic and bilinear systems”, Dokl. Math., 71:3 (2005), 370–372 | MR | Zbl

[16] H. D. Ebbinghaus, H. Hermes, F. Hirzebruch, M. Koecher, K. Mainzer, J. Neukirch, A. Prestel, R. Remmert, Numbers, English transl. of 2nd German ed., Grad. Texts in Math., 123, corr. 3rd printing, Springer-Verlag, New York, 1995, xviii+391 pp. | DOI | MR | Zbl

[17] E. R. Avakov, A. V. Arutyunov, D. Yu. Karamzin, “An investigation of smooth maps in a neighbourhood of an abnormal point”, Izv. Math., 78:2 (2014), 213–250 | DOI | DOI | MR | Zbl | Zbl

[18] A. V. Arutyunov, “Nonnegativity of quadratic forms on intersections of quadrics and quadratic maps”, Math. Notes, 84:2 (2008), 155–165 | DOI | DOI | MR | Zbl

[19] A. V. Arutyunov, S. E. Zhukovskiy, “Existence and properties of inverse mappings”, Proc. Steklov Inst. Math., 271 (2010), 12–22 | DOI | MR | Zbl | Zbl

[20] D. Yu. Karamzin, “The Dines theorem and some other properties of quadratic mappings”, Comput. Math. Math. Phys., 55:10 (2015), 1633–1641 | DOI | DOI | MR | Zbl

[21] M. W. Hirsch, Differential topology, Grad. Texts in Math., 33, Springer-Verlag, New York–Heidelberg, 1976, x+221 pp. | DOI | MR | MR | Zbl | Zbl

[22] M. A. Krasnosel'skii, P. P. Zabreĭko, Geometrical methods of nonlinear analysis, Grundlehren Math. Wiss., 263, Springer-Verlag, Berlin, 1984, xix+409 pp. | DOI | MR | MR | Zbl | Zbl

[23] A. V. Arutyunov, S. E. Zhukovskii, “On surjective quadratic mappings”, Math. Notes, 99:2 (2016), 192–195 | DOI | DOI | MR | Zbl

[24] A. F. Izmailov, A. A. Tretyakov, “K probleme obratimosti kvadratichnykh otobrazhenii”, Vestn. Ros. un-ta druzhby narodov. Ser. Matematika. Informatika. Fizika, 1998, no. 4-5, 84–89 | Zbl

[25] A. Tret'yakov, H. Żoła̧dek, “A remark about homogeneous polynomial maps”, Topol. Methods Nonlinear Anal., 19 (2002), 257–273 | MR | Zbl

[26] A. V. Arutyunov, “Implicit-function theorem on the cone in a neighborhood of an irregular point”, Math. Notes, 78:4 (2005), 573–576 | DOI | DOI | MR | Zbl

[27] V. V. Prasolov, Polynomials, Algorithms Comput. Math., 11, Springer-Verlag, Berlin, 2004, xiv+301 pp. | DOI | MR | Zbl