Weighted inequalities for quasilinear integral operators on the semi-axis and applications to Lorentz spaces
Sbornik. Mathematics, Tome 207 (2016) no. 8, pp. 1159-1186 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A precise characterization of inequalities in weighted Lebesgue spaces with positive quasilinear integral operators of iterative type on the half-axis is given. All cases of positive integration parameters are treated, including the case of supremum. Applications to the solution of the well-known problem of the boundedness of the Hardy-Littlewood maximal operator in weighted Lorentz $\Gamma$-spaces are given. Bibliography: 41 titles.
Keywords: integral operator, weighted inequality, Lorentz space.
Mots-clés : Lebesgue space
@article{SM_2016_207_8_a6,
     author = {D. V. Prokhorov and V. D. Stepanov},
     title = {Weighted inequalities for quasilinear integral operators on the semi-axis and applications to {Lorentz} spaces},
     journal = {Sbornik. Mathematics},
     pages = {1159--1186},
     year = {2016},
     volume = {207},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_8_a6/}
}
TY  - JOUR
AU  - D. V. Prokhorov
AU  - V. D. Stepanov
TI  - Weighted inequalities for quasilinear integral operators on the semi-axis and applications to Lorentz spaces
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1159
EP  - 1186
VL  - 207
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_8_a6/
LA  - en
ID  - SM_2016_207_8_a6
ER  - 
%0 Journal Article
%A D. V. Prokhorov
%A V. D. Stepanov
%T Weighted inequalities for quasilinear integral operators on the semi-axis and applications to Lorentz spaces
%J Sbornik. Mathematics
%D 2016
%P 1159-1186
%V 207
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2016_207_8_a6/
%G en
%F SM_2016_207_8_a6
D. V. Prokhorov; V. D. Stepanov. Weighted inequalities for quasilinear integral operators on the semi-axis and applications to Lorentz spaces. Sbornik. Mathematics, Tome 207 (2016) no. 8, pp. 1159-1186. http://geodesic.mathdoc.fr/item/SM_2016_207_8_a6/

[1] S. Bloom, R. Kerman, “Weighted norm inequalities for operators of Hardy type”, Proc. Amer. Math. Soc., 113:1 (1991), 135–141 | DOI | MR | Zbl

[2] R. Oĭnarov, “Two-sided norm estimates for certain classes of integral operators”, Proc. Steklov Inst. Math., 204 (1994), 205–214 | MR | Zbl

[3] V. D. Stepanov, “Weighted norm inequalities of Hardy type for a class of integral operators”, J. London Math. Soc. (2), 50:1 (1994), 105–120 | DOI | MR | Zbl

[4] Qinsheng Lai, “Weighted modular inequalities for Hardy-type operators”, Proc. London Math. Soc. (3), 79:3 (1999), 649–672 | DOI | MR | Zbl

[5] E. Lomakina, V. Stepanov, “On the Hardy-type integral operators in Banach function spaces”, Publ. Mat., 42:1 (1998), 165–194 | DOI | MR | Zbl

[6] D. V. Prokhorov, “Weighted Hardy's inequalities for negative indices”, Publ. Mat., 48:2 (2004), 423–443 | DOI | MR | Zbl

[7] D. V. Prokhorov, “Inequalities of Hardy type for a class of integral operators with measures”, Anal. Math., 33:3 (2007), 199–225 | DOI | MR | Zbl

[8] D. V. Prokhorov, “On a weighted Hardy-type inequality”, Dokl. Math., 88:3 (2013), 687–689 | DOI | DOI | MR | Zbl

[9] V. D. Stepanov, E. P. Ushakova, “Alternative criteria for the boundedness of Volterra integral operators in Lebesgue spaces”, Math. Inequal. Appl., 12:4 (2009), 873–889 | DOI | MR | Zbl

[10] V. D. Stepanov, E. P. Ushakova, “Kernel operators with variable intervals of integration in Lebesgue spaces and applications”, Math. Inequal. Appl., 13:3 (2010), 449–510 | DOI | MR | Zbl

[11] A. Gogatishvili, B. Opic, L. Pick, “Weighted inequalities for Hardy-type operators involving suprema”, Collect. Math., 57:3 (2006), 227–255 | MR | Zbl

[12] A. Gogatishvili, L. Pick, “A reduction theorem for supremum operators”, J. Comput. Appl. Math., 208:1 (2007), 270–279 | DOI | MR | Zbl

[13] D. V. Prokhorov, “Inequalities for Riemann–Liouville operator involving suprema”, Collect. Math., 61:3 (2010), 263–276 | DOI | MR | Zbl

[14] D. V. Prokhorov, “Lorentz norm inequalities for the Hardy operator involving suprema”, Proc. Amer. Math. Soc., 140:5 (2012), 1585–1592 | DOI | MR | Zbl

[15] D. V. Prokhorov, “Boundedness and compactness of a supremum-involving integral operator”, Proc. Steklov Inst. Math., 283 (2013), 136–148 | DOI | Zbl

[16] D. V. Prokhorov, V. D. Stepanov, “On supremum operators”, Dokl. Math., 84:1 (2011), 457–458 | DOI | MR | Zbl

[17] V. D. Stepanov, “On a supremum operator”, Spectral theory, function spaces and inequalities, Oper. Theory Adv. Appl., 219, Birkhäuser/Springer Basel AG, Basel, 2012, 233–242 | DOI | MR | Zbl

[18] V. I. Burenkov, H. V. Guliev, “Necessary and sufficient conditions for boundedness of the maximal operator in local Morry-type spaces”, Studia Math., 163:2 (2004), 157–176 | DOI | MR | Zbl

[19] V. I. Burenkov, H. V. Guliev, V. S. Guliev, “Necessary and sufficient conditions for the boundedness of fractional maximal operators in local Morry-type spaces”, J. Comput. Appl. Math., 208:1 (2007), 280–301 | DOI | MR | Zbl

[20] V. I. Burenkov, V. S. Guliev, “Necessary and sufficient conditions for the boundedness of the Riesz potential in the local Morry-type spaces”, Potential Anal., 30:3 (2009), 211–249 | DOI | MR | Zbl

[21] V. I. Burenkov, P. Jain, T. V. Tararykova,, “On boundedness of the Hardy operator in Morry-type spaces”, Eurasian Math. J., 2:1 (2011), 52–80 | MR | Zbl

[22] V. I. Burenkov, R. Oinarov, “Necessary and sufficient conditions for boundedness of the Hardy-type operator from a weighted Lebesgue space to a Morry-type space”, Math. Inequal. Appl., 16:1 (2013), 1–19 | DOI | MR | Zbl

[23] A. Gogatishvili, R. Ch. Mustafayev, L.-E. Persson, “Some new iterated Hardy-type inequalities”, J. Funct. Spaces Appl., 2012 (2012), 734194, 30 pp. | DOI | MR | Zbl

[24] A. Gogatishvili, R. Mustafayev, L.-E. Persson, “Some new iterated Hardy-type inequalities: the case $\theta=1$”, J. Inequal. Appl., 2013 (2013), 515, 29 pp. | DOI | MR | Zbl

[25] D. V. Prokhorov, V. D. Stepanov, “Weighted estimates for a class of sublinear operators”, Dokl. Math., 88:3 (2013), 721–723 | DOI | DOI | MR | Zbl

[26] D. V. Prokhorov, V. D. Stepanov, “On weighted Hardy inequalities in mixed norms”, Proc. Steklov Inst. Math., 283 (2013), 149–164 | DOI | Zbl

[27] D. V. Prokhorov, V. D. Stepanov, “Weighted estimates for the Riemann–Liouville operators and applications”, Proc. Steklov Inst. Math., 243 (2003), 278–301 | MR | Zbl

[28] M. L. Gol'dman, H. P. Heinig, V. D. Stepanov, “On the principle of duality in Lorentz spaces”, Canad. J. Math., 48:5 (1996), 959–979 | DOI | MR | Zbl

[29] G. Sinnamon, “Embeddings of concave functions and duals of Lorentz spaces”, Publ. Mat., 46:2 (2002), 489–515 | DOI | MR | Zbl

[30] A. Gogatishvili, V. D. Stepanov, “Reduction theorems for weighted integral inequalities on the cone of monotone functions”, Russian Math. Surveys, 68:4 (2013), 597–664 | DOI | DOI | MR | Zbl

[31] E. Sawyer, “Boundedness of classical operators on classical Lorentz spaces”, Studia Math., 96:2 (1990), 145–158 | MR | Zbl

[32] M. Carro, L. Pick, J. Soria, V. D. Stepanov, “On embeddings between classical Lorentz spaces”, Math. Inequal. Appl., 4:3 (2001), 397–428 | MR | Zbl

[33] M. Carro, J. Soria, “Boundedness of some integral operators”, Canad. J. Math., 45:6 (1993), 1155–1166 | DOI | MR | Zbl

[34] A. Gogatishvili, V. D. Stepanov, “Reduction theorems for operators on the cones of monotone functions”, J. Math. Anal. Appl., 405:1 (2013), 156–172 | DOI | MR | Zbl

[35] G. Sinnamon, “Transferring monotonicity in weighted norm inequalities”, Collect. Math., 54:2 (2003), 181–216 | MR | Zbl

[36] V. D. Stepanov, “The weighted Hardy's inequality for nonincreasing functions”, Trans. Amer. Math. Soc., 338:1 (1993), 173–186 | DOI | MR | Zbl

[37] C. Bennett, R. Sharpley, Interpolation of operators, Pure Appl. Math., 129, Academic Press, Boston, MA, 1988, xiv+469 pp. | MR | Zbl

[38] V. D. Stepanov, “Integral operators on the cone of monotone functions”, J. London Math. Soc. (2), 48:3 (1993), 465–487 | DOI | MR | Zbl

[39] M. L. Goldman, M. V. Sorokina, “Three-weighted Hardy-type inequalities on the cone of quasimonotone functions”, Dokl. Math., 71:2 (2005), 209–213 | MR | Zbl

[40] L. V. Kantorovich, G. P. Akilov, Functional analysis, Pergamon Press, Oxford-Elmsford, NY, 1982, xiv+589 pp. | MR | MR | Zbl | Zbl

[41] G. Sinnamon, V. D. Stepanov, “The weighted Hardy inequality: new proofs and the case $p=1$”, J. London Math. Soc. (2), 54:1 (1996), 89–101 | DOI | MR | Zbl