Karatsuba's method for estimating Kloosterman sums
Sbornik. Mathematics, Tome 207 (2016) no. 8, pp. 1142-1158 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using Karatsuba's method, we obtain estimates for Kloosterman sums modulo a prime, in which the number of terms is less than an arbitrarily small fixed power of the modulus. These bounds refine similar results obtained earlier by Bourgain and Garaev. Bibliography: 16 titles.
Keywords: short Kloosterman sums, Karatsuba's method
Mots-clés : inverse residues.
@article{SM_2016_207_8_a5,
     author = {M. A. Korolev},
     title = {Karatsuba's method for estimating {Kloosterman} sums},
     journal = {Sbornik. Mathematics},
     pages = {1142--1158},
     year = {2016},
     volume = {207},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_8_a5/}
}
TY  - JOUR
AU  - M. A. Korolev
TI  - Karatsuba's method for estimating Kloosterman sums
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1142
EP  - 1158
VL  - 207
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_8_a5/
LA  - en
ID  - SM_2016_207_8_a5
ER  - 
%0 Journal Article
%A M. A. Korolev
%T Karatsuba's method for estimating Kloosterman sums
%J Sbornik. Mathematics
%D 2016
%P 1142-1158
%V 207
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2016_207_8_a5/
%G en
%F SM_2016_207_8_a5
M. A. Korolev. Karatsuba's method for estimating Kloosterman sums. Sbornik. Mathematics, Tome 207 (2016) no. 8, pp. 1142-1158. http://geodesic.mathdoc.fr/item/SM_2016_207_8_a5/

[1] M. A. Korolev, “Incomplete Kloosterman sums and their applications”, Izv. Math., 64:6 (2000), 1129–1152 | DOI | DOI | MR | Zbl

[2] M. A. Korolev, “Short Kloosterman sums with weights”, Math. Notes, 88:3 (2010), 374–385 | DOI | DOI | MR | Zbl

[3] A. A. Karatsuba, “The distribution of inverses in a residue ring modulo a given modulus”, Russian Acad. Sci. Dokl. Math., 48:3 (1994), 452–454 | MR | Zbl

[4] A. A. Karatsuba, “Fractional parts of functions of a special form”, Izv. Math., 59:4 (1995), 721–740 | DOI | MR | Zbl

[5] A. A. Karatsuba, “Analogues of Kloosterman sums”, Izv. Math., 59:5 (1995), 971–981 | DOI | MR | Zbl

[6] A. A. Karatsuba, “Sums of fractional parts of functions of a special form”, Dokl. Math., 54:1 (1996), 541 | MR | Zbl

[7] A. A. Karatsuba, “Analogi nepolnykh summ Kloostermana i ikh prilozheniya”, Tatra Mt. Math. Publ., 11 (1997), 89–120 | MR | Zbl

[8] A. A. Karatsuba, “Kloosterman double sums”, Math. Notes, 66:5 (1999), 565–569 | DOI | DOI | MR | Zbl

[9] A. A. Karatsuba, “New estimates of short Kloosterman sums”, Math. Notes, 88:3 (2010), 347–359 | DOI | DOI | MR | Zbl

[10] J. Bourgain, M. Z. Garaev, “Sumsets of reciprocals in prime fields and multilinear Kloosterman sums”, Izv. Math., 78:4 (2014), 656–707 | DOI | DOI | MR | Zbl

[11] J. Bourgain, “Multilinear exponential sums in prime fields under optimal entropy condition on the sources”, Geom. Funct. Anal., 18:5 (2009), 1477–1502 | DOI | MR | Zbl

[12] P. V. Snurnitsyn, “Ob otsenke srednego znacheniya korotkoi summy Kloostermana”, Uchenye zapiski Orlovskogo gos. un-ta. Ser. Estestvennye, tekhnicheskie i meditsinskie nauki, 6:2 (2012), 212–215

[13] J. Bourgain, M. Z. Garaev, “Kloosterman sums in residue rings”, Acta Arith., 164:1 (2014), 43–64 ; arXiv: 1309.1124 | MR | Zbl

[14] P. V. Snurnitsyn, “Ob otsenkakh analogov nepolnykh summ Kloostermana”, Chebyshevskii sb., 14:2 (2013), 151–153

[15] K. Prachar, Primzahlverteilung, Grundlehren Math. Wiss., 91, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1957, x+415 pp. | MR | MR | Zbl | Zbl

[16] A. I. Vinogradov, “O chislakh s malymi prostymi delitelyami”, Dokl. AN SSSR, 109:4 (1956), 683–686 | MR | Zbl