@article{SM_2016_207_8_a4,
author = {E. A. Kiselev and L. A. Minin and I. Ya. Novikov},
title = {Calculation of the {Riesz} constants and~orthogonalization for incomplete systems of coherent states by means of theta functions},
journal = {Sbornik. Mathematics},
pages = {1127--1141},
year = {2016},
volume = {207},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2016_207_8_a4/}
}
TY - JOUR AU - E. A. Kiselev AU - L. A. Minin AU - I. Ya. Novikov TI - Calculation of the Riesz constants and orthogonalization for incomplete systems of coherent states by means of theta functions JO - Sbornik. Mathematics PY - 2016 SP - 1127 EP - 1141 VL - 207 IS - 8 UR - http://geodesic.mathdoc.fr/item/SM_2016_207_8_a4/ LA - en ID - SM_2016_207_8_a4 ER -
%0 Journal Article %A E. A. Kiselev %A L. A. Minin %A I. Ya. Novikov %T Calculation of the Riesz constants and orthogonalization for incomplete systems of coherent states by means of theta functions %J Sbornik. Mathematics %D 2016 %P 1127-1141 %V 207 %N 8 %U http://geodesic.mathdoc.fr/item/SM_2016_207_8_a4/ %G en %F SM_2016_207_8_a4
E. A. Kiselev; L. A. Minin; I. Ya. Novikov. Calculation of the Riesz constants and orthogonalization for incomplete systems of coherent states by means of theta functions. Sbornik. Mathematics, Tome 207 (2016) no. 8, pp. 1127-1141. http://geodesic.mathdoc.fr/item/SM_2016_207_8_a4/
[1] J. von Neumann, Mathematische Grundlagen der Quantenmechanik, Grundlehren Math. Wiss., 38, Springer-Verlag, Berlin, 1932, 262 pp. | MR | MR | Zbl | Zbl
[2] A. M. Perelomov, “On the completeness of a system of coherent states”, Theoret. and Math. Phys., 6:2 (1971), 156–164 | DOI | MR
[3] V. Bargmann, P. Butera, L. Girardello, J. R. Klauder, “On the completeness of the coherent states”, Rep. Mathematical Phys., 2:4 (1971), 221–228 | DOI | MR
[4] B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989, xii+451 pp. | MR | MR | Zbl | Zbl
[5] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Wavelet theory, Transl. Math. Monogr., 239, Amer. Math. Soc., Providence, RI, 2011, xiv+506 pp. | MR | MR | Zbl | Zbl
[6] H. Bacry, A. Grossmann, J. Zak, “Proof of the completeness of lattice states in the $kq$ representation”, Phys. Rev. B, 12 (1975), 1118–1120 | DOI
[7] I. Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math., 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992, xx+357 pp. | DOI | MR | Zbl | Zbl
[8] E. A. Kiselev, L. A. Minin, I. Ya. Novikov, S. M. Sitnik, “On the Riesz constants for systems of integer translates”, Math. Notes, 96:2 (2014), 228–238 | DOI | DOI | MR | Zbl
[9] E. A. Kiselev, L. A. Minin, I. Ya. Novikov, “On the construction of biorthogonal systems for subspaces generated by integral shifts of a single function”, Math. Notes, 96:3 (2014), 451–453 | DOI | DOI | MR | Zbl
[10] E. A. Kiselev, L. A. Minin, “Ob ustoichivosti razlozheniya po diskretnym sistemam kogerentnykh sostoyanii”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Matem., 2014, no. 3, 21–28 | Zbl
[11] N. S. Bakhvalov, N. P. Zhidkov, G. M. Kobelkov, Chislennye metody, Nauka, M., 1987, 600 pp. | MR | Zbl
[12] O. Christensen, An introduction to frames and Riesz bases, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA, 2003, xxii+440 pp. | DOI | MR | Zbl
[13] E. T. Whittaker, G. N. Watson, A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, 4th ed., Cambridge Univ. Press, Cambridge, 1927, vi+608 pp. | MR | Zbl
[14] M. V. Zhuravlev, L. A. Minin, S. M. Sitnik, “O vychislitelnykh osobennostyakh interpolyatsii s pomoschyu tselochislennykh sdvigov gaussovykh funktsii”, Nauchn. vedom. BelGU. Matem. Fiz., 17/2:13(68) (2009), 89–99
[15] C. K. Chui, An introduction to wavelets, Wavelet Anal. Appl., 1, Academic Press, Boston, MA, 1992, x+264 pp. | MR | Zbl
[16] M. J. Bastiaans, “Gabor's expansion of a signal into Gaussian elementary signals”, Proc. IEEE, 68:4 (1980), 538–539 | DOI
[17] A. Perelomov, Generalized coherent states and their applications, Texts Monogr. Phys., Springer-Verlag, Berlin, 1986, xii+320 pp. | DOI | MR | MR | Zbl | Zbl
[18] G. M. Zaslavskii, R. Z. Sagdeev, Vvedenie v nelineinuyu fiziku: ot mayatnika do turbulentnosti i khaosa, Nauka, M., 1988, 368 pp. | MR | Zbl
[19] NIST Handbook of mathematical functions, eds. F. W. J. Olver, D. W. Lozier, R. F. Boisvert, Ch W. Clark, Cambridge Univ. Press, Cambridge, 2010, xvi+951 pp. | MR | Zbl