Calculation of the Riesz constants and orthogonalization for incomplete systems of coherent states by means of theta functions
Sbornik. Mathematics, Tome 207 (2016) no. 8, pp. 1127-1141 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For systems of coherent states that are multiply rarefied with respect to von Neumann's complete system, we use Jacobi theta functions to obtain exact analytic expressions for the Riesz constants, investigate their behaviour as functions of the ratio of steps in the spatial and frequency domains, construct biorthogonal systems, and realize an orthogonalization procedure that preserves the structure of the windowed Fourier transform. Bibliography: 19 titles.
Keywords: Riesz systems, coherent states, theta functions, orthogonalization, biorthogonal systems.
@article{SM_2016_207_8_a4,
     author = {E. A. Kiselev and L. A. Minin and I. Ya. Novikov},
     title = {Calculation of the {Riesz} constants and~orthogonalization for incomplete systems of coherent states by means of theta functions},
     journal = {Sbornik. Mathematics},
     pages = {1127--1141},
     year = {2016},
     volume = {207},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_8_a4/}
}
TY  - JOUR
AU  - E. A. Kiselev
AU  - L. A. Minin
AU  - I. Ya. Novikov
TI  - Calculation of the Riesz constants and orthogonalization for incomplete systems of coherent states by means of theta functions
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1127
EP  - 1141
VL  - 207
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_8_a4/
LA  - en
ID  - SM_2016_207_8_a4
ER  - 
%0 Journal Article
%A E. A. Kiselev
%A L. A. Minin
%A I. Ya. Novikov
%T Calculation of the Riesz constants and orthogonalization for incomplete systems of coherent states by means of theta functions
%J Sbornik. Mathematics
%D 2016
%P 1127-1141
%V 207
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2016_207_8_a4/
%G en
%F SM_2016_207_8_a4
E. A. Kiselev; L. A. Minin; I. Ya. Novikov. Calculation of the Riesz constants and orthogonalization for incomplete systems of coherent states by means of theta functions. Sbornik. Mathematics, Tome 207 (2016) no. 8, pp. 1127-1141. http://geodesic.mathdoc.fr/item/SM_2016_207_8_a4/

[1] J. von Neumann, Mathematische Grundlagen der Quantenmechanik, Grundlehren Math. Wiss., 38, Springer-Verlag, Berlin, 1932, 262 pp. | MR | MR | Zbl | Zbl

[2] A. M. Perelomov, “On the completeness of a system of coherent states”, Theoret. and Math. Phys., 6:2 (1971), 156–164 | DOI | MR

[3] V. Bargmann, P. Butera, L. Girardello, J. R. Klauder, “On the completeness of the coherent states”, Rep. Mathematical Phys., 2:4 (1971), 221–228 | DOI | MR

[4] B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989, xii+451 pp. | MR | MR | Zbl | Zbl

[5] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Wavelet theory, Transl. Math. Monogr., 239, Amer. Math. Soc., Providence, RI, 2011, xiv+506 pp. | MR | MR | Zbl | Zbl

[6] H. Bacry, A. Grossmann, J. Zak, “Proof of the completeness of lattice states in the $kq$ representation”, Phys. Rev. B, 12 (1975), 1118–1120 | DOI

[7] I. Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math., 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992, xx+357 pp. | DOI | MR | Zbl | Zbl

[8] E. A. Kiselev, L. A. Minin, I. Ya. Novikov, S. M. Sitnik, “On the Riesz constants for systems of integer translates”, Math. Notes, 96:2 (2014), 228–238 | DOI | DOI | MR | Zbl

[9] E. A. Kiselev, L. A. Minin, I. Ya. Novikov, “On the construction of biorthogonal systems for subspaces generated by integral shifts of a single function”, Math. Notes, 96:3 (2014), 451–453 | DOI | DOI | MR | Zbl

[10] E. A. Kiselev, L. A. Minin, “Ob ustoichivosti razlozheniya po diskretnym sistemam kogerentnykh sostoyanii”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Matem., 2014, no. 3, 21–28 | Zbl

[11] N. S. Bakhvalov, N. P. Zhidkov, G. M. Kobelkov, Chislennye metody, Nauka, M., 1987, 600 pp. | MR | Zbl

[12] O. Christensen, An introduction to frames and Riesz bases, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA, 2003, xxii+440 pp. | DOI | MR | Zbl

[13] E. T. Whittaker, G. N. Watson, A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, 4th ed., Cambridge Univ. Press, Cambridge, 1927, vi+608 pp. | MR | Zbl

[14] M. V. Zhuravlev, L. A. Minin, S. M. Sitnik, “O vychislitelnykh osobennostyakh interpolyatsii s pomoschyu tselochislennykh sdvigov gaussovykh funktsii”, Nauchn. vedom. BelGU. Matem. Fiz., 17/2:13(68) (2009), 89–99

[15] C. K. Chui, An introduction to wavelets, Wavelet Anal. Appl., 1, Academic Press, Boston, MA, 1992, x+264 pp. | MR | Zbl

[16] M. J. Bastiaans, “Gabor's expansion of a signal into Gaussian elementary signals”, Proc. IEEE, 68:4 (1980), 538–539 | DOI

[17] A. Perelomov, Generalized coherent states and their applications, Texts Monogr. Phys., Springer-Verlag, Berlin, 1986, xii+320 pp. | DOI | MR | MR | Zbl | Zbl

[18] G. M. Zaslavskii, R. Z. Sagdeev, Vvedenie v nelineinuyu fiziku: ot mayatnika do turbulentnosti i khaosa, Nauka, M., 1988, 368 pp. | MR | Zbl

[19] NIST Handbook of mathematical functions, eds. F. W. J. Olver, D. W. Lozier, R. F. Boisvert, Ch W. Clark, Cambridge Univ. Press, Cambridge, 2010, xvi+951 pp. | MR | Zbl