Calculation of the Riesz constants and~orthogonalization for incomplete systems of coherent states by means of theta functions
Sbornik. Mathematics, Tome 207 (2016) no. 8, pp. 1127-1141
Voir la notice de l'article provenant de la source Math-Net.Ru
For systems of coherent states that are multiply rarefied with respect to von Neumann's complete system, we use Jacobi theta functions to obtain exact analytic expressions for the Riesz constants, investigate their behaviour as functions of the ratio of steps in the spatial and frequency domains, construct biorthogonal systems, and realize an orthogonalization procedure that preserves the structure of the windowed Fourier transform.
Bibliography: 19 titles.
Keywords:
Riesz systems, coherent states, theta functions, orthogonalization, biorthogonal systems.
@article{SM_2016_207_8_a4,
author = {E. A. Kiselev and L. A. Minin and I. Ya. Novikov},
title = {Calculation of the {Riesz} constants and~orthogonalization for incomplete systems of coherent states by means of theta functions},
journal = {Sbornik. Mathematics},
pages = {1127--1141},
publisher = {mathdoc},
volume = {207},
number = {8},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2016_207_8_a4/}
}
TY - JOUR AU - E. A. Kiselev AU - L. A. Minin AU - I. Ya. Novikov TI - Calculation of the Riesz constants and~orthogonalization for incomplete systems of coherent states by means of theta functions JO - Sbornik. Mathematics PY - 2016 SP - 1127 EP - 1141 VL - 207 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2016_207_8_a4/ LA - en ID - SM_2016_207_8_a4 ER -
%0 Journal Article %A E. A. Kiselev %A L. A. Minin %A I. Ya. Novikov %T Calculation of the Riesz constants and~orthogonalization for incomplete systems of coherent states by means of theta functions %J Sbornik. Mathematics %D 2016 %P 1127-1141 %V 207 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2016_207_8_a4/ %G en %F SM_2016_207_8_a4
E. A. Kiselev; L. A. Minin; I. Ya. Novikov. Calculation of the Riesz constants and~orthogonalization for incomplete systems of coherent states by means of theta functions. Sbornik. Mathematics, Tome 207 (2016) no. 8, pp. 1127-1141. http://geodesic.mathdoc.fr/item/SM_2016_207_8_a4/