@article{SM_2016_207_8_a2,
author = {L. A. Beklaryan},
title = {Groups of line and circle diffeomorphisms. {Criteria} for almost nilpotency and structure theorems},
journal = {Sbornik. Mathematics},
pages = {1079--1099},
year = {2016},
volume = {207},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2016_207_8_a2/}
}
L. A. Beklaryan. Groups of line and circle diffeomorphisms. Criteria for almost nilpotency and structure theorems. Sbornik. Mathematics, Tome 207 (2016) no. 8, pp. 1079-1099. http://geodesic.mathdoc.fr/item/SM_2016_207_8_a2/
[1] M. M. Krylov, M. M. Bogolyubov, “Zagalna teoriya miri ta ii zastosuvaniya do vivcheniya dinamichnikh sistem neliniinikh mekhanitsi”, Zbirnik prats z neliniinoi mekhaniki, Zapiski kafedri matematichnoi fiziki Institutu budivelnoi mekhaniki AN URSR, 3, 1937, 55–112
[2] M. Day, “Amenable semigroups”, Illinois J. Math., 1:4 (1957), 509–544 | MR | Zbl
[3] J. F. Plante, “Foliations with measure preserving holonomy”, Ann. of Math. (2), 102:2 (1975), 327–361 | DOI | MR | Zbl
[4] M. Gromov, “Groups of polinomial growth and expending maps”, Inst. Hautes Études Sci. Publ. Math., 53 (1981), 53–78 | DOI | MR | Zbl
[5] A. Navas, Groups of circle diffeomorphisms, Chicago Lectures in Math., Univ. of Chicago Press, Chicago, IL, 2011, xviii+290 pp. | DOI | MR | Zbl
[6] B. Deroin, V. Kleptsyn, A. Navas, “Sur la dynamique unidimensionnelle en régularité intermédiaire”, Acta Math., 199:2 (2007), 199–262 | DOI | MR | Zbl
[7] R. I. Grigorchuk, A. Maki, “A group of intermediate growth acting by homomorphisms on the real line”, Math. Notes, 53:2 (1993), 146–157 | DOI | MR | Zbl
[8] L. A. Beklaryan, “Groups of homeomorphisms of the line and the circle. Topological characteristics and metric invariants”, Russian Math. Surveys, 59:4 (2004), 599–660 | DOI | DOI | MR | Zbl
[9] L. A. Beklaryan, “Groups of line and circle homeomorphisms. Metric invariants and questions of classification”, Russian Math. Surveys, 70:2 (2015), 203–248 | DOI | DOI | MR | Zbl
[10] P. de la Harpe, R. I. Grigorchuk, T. Ceccherini-Silberstein, “Amenability and paradoxical decompositions for pseudogroups and for discrete metric spaces”, Proc. Steklov Inst. Math., 224 (1999), 57–97 | MR | Zbl
[11] S. I. Adian, “New estimates of odd exponents of infinite Burnside groups”, Proc. Steklov Inst. Math., 289 (2015), 33–71 | DOI | DOI | Zbl
[12] L. A. Beklaryan, “On the classification of groups of orientation-preserving homeomorphisms of $\mathbb R$. II. Projectively-invariant measures”, Sb. Math., 187:4 (1996), 469–494 | DOI | DOI | MR | Zbl
[13] J. F. Plante, “Solvable groups acting on the line”, Trans. Amer. Math. Soc., 278:1 (1983), 401–414 | DOI | MR | Zbl
[14] E. Salhi, “Sur les ensembles minimaux locaux”, C. R. Acad. Sci. Paris Sér. I Math., 295:12 (1982), 691–694 | MR | Zbl
[15] E. Salhi, “Sur un théorème de structure des feuilletages de codimension 1”, C. R. Acad. Sci. Paris Sér. I Math., 300:18 (1985), 635–638 | MR | Zbl
[16] E. Salhi, “Niveau de feuilles”, C. R. Acad. Sci. Paris Sér. I Math., 301:5 (1985), 219–222 | MR | Zbl
[17] L. A. Beklaryan, “On the classification of groups of orientation-preserving homeomorphisms of $\mathbb R$. III. $\omega$-projectively invariant measures”, Sb. Math., 190:4 (1999), 521–538 | DOI | DOI | MR | Zbl
[18] I. P. Cornfeld, S. V. Fomin, Ya. G. Sinai, Ergodic theory, Grundlehren Math. Wiss., 245, Springer-Verlag, New York, 1982, x+486 pp. | DOI | MR | MR | Zbl | Zbl
[19] L. V. Ahlfors, Moebius transformations in several dimensions, Ordway Professorship Lectures Math., Univ. of Minnesota, School of Mathematics, Minneapolis, MI, 1981, ii+150 pp. | MR | MR | Zbl | Zbl
[20] L. A. Beklaryan, “On a criterion for the topological conjugacy of a quasisymmetric group to a group of affine transformations of $\mathbb R$”, Sb. Math., 191:6 (2000), 809–819 | DOI | DOI | MR | Zbl
[21] L. A. Beklaryan, “On analogs of the Tits alternative for groups of homeomorphisms of the circle and of the line”, Math. Notes, 71:3 (2002), 305–315 | DOI | DOI | MR | Zbl
[22] L. A. Beklaryan, “Invariant and projectively invariant measures for groups of orientation-preserving homeomorphisms of $\mathbb{R}$”, Russian Acad. Sci. Dokl. Math., 48:2 (1994), 387–390 | MR | Zbl
[23] L. A. Beklaryan, “A criterion connected with the structure of the fixed-point set for the existence of a projectively invariant measure for groups of orientation-preserving homeomorphisms of $\mathbb R$”, Russian Math. Surveys, 51:3 (1996), 539–540 | DOI | DOI | MR | Zbl
[24] V. V. Solodov, “Homeomorphisms of the circle and a foliation”, Math. USSR-Izv., 24:3 (1985), 553–566 | DOI | MR | Zbl
[25] G. Margulis, “Free subgroups of the homeomorphism group of the circle”, C. R. Acad. Sci. Paris Sér. I Math., 331:9 (2000), 669–674 | DOI | MR | Zbl
[26] L. A. Beklaryan, “Criteria for the existence of an invariant measure for groups of homeomorphisms of the line”, Math. Notes, 95:3 (2014), 304–307 | DOI | DOI | MR | Zbl
[27] L. A. Beklaryan, “Groups of homeomorphisms of the line. Criteria for the existence of invariant and projectively invariant measures in terms of the commutator subgroup”, Sb. Math., 205:12 (2014), 1741–1760 | DOI | DOI | MR | Zbl
[28] L. A. Beklaryan, “On the classification of groups of orientation-preserving homeomorphisms of $\mathbb R$. I. Invariant measures”, Sb. Math., 187:3 (1996), 335–364 | DOI | DOI | MR | Zbl
[29] D. V. Anosov, “On the contribution of N. N. Bogolyubov to the theory of dynamical systems”, Russian Math. Surveys, 49:5 (1994), 1–18 | DOI | MR | Zbl
[30] A. G. Kurosh, Lectures in general algebra, Internat. Ser. Monogr. Pure Appl. Math., 70, Pergamon Press, Oxford–Edinburgh–New York, 1965, x+364 pp. | MR | MR | Zbl | Zbl
[31] L. A. Beklaryan, “Residual subsets in the space of finitely generated groups of diffeomorphisms of the circle”, Math. Notes, 93:1 (2013), 29–35 | DOI | DOI | MR | Zbl
[32] J. M. Rosenblatt, “Invariant measures and growth conditions”, Trans. Amer. Math. Soc., 193 (1974), 33–53 | DOI | MR | Zbl
[33] L. A. Beklaryan, “Group specialities in the problem of the maximum principle for systems with deviating argument”, J. Dyn. Control Syst., 18:3 (2012), 419–432 | DOI | MR | Zbl
[34] V. Arnol'd, Chapitres supplémentaires de la théorie des équations différentielles ordinaires, Mir, M., 1980, 324 pp. | MR | MR | Zbl | Zbl