The length of a minimal filling of star type
Sbornik. Mathematics, Tome 207 (2016) no. 8, pp. 1064-1078 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The length of a minimal filling of star type for an arbitrary finite metric space is expressed as a function of the distances between points of this space. Bibliography: 9 titles.
Keywords: Banach space, shortest network, minimal filling, Steiner point.
@article{SM_2016_207_8_a1,
     author = {B. B. Bednov},
     title = {The length of a~minimal filling of star type},
     journal = {Sbornik. Mathematics},
     pages = {1064--1078},
     year = {2016},
     volume = {207},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_8_a1/}
}
TY  - JOUR
AU  - B. B. Bednov
TI  - The length of a minimal filling of star type
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1064
EP  - 1078
VL  - 207
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_8_a1/
LA  - en
ID  - SM_2016_207_8_a1
ER  - 
%0 Journal Article
%A B. B. Bednov
%T The length of a minimal filling of star type
%J Sbornik. Mathematics
%D 2016
%P 1064-1078
%V 207
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2016_207_8_a1/
%G en
%F SM_2016_207_8_a1
B. B. Bednov. The length of a minimal filling of star type. Sbornik. Mathematics, Tome 207 (2016) no. 8, pp. 1064-1078. http://geodesic.mathdoc.fr/item/SM_2016_207_8_a1/

[1] A. O. Ivanov, A. A. Tuzhilin, Teoriya ekstremalnykh setei, Sovremennaya matematika, In-t kompyuternykh issledovanii, M.–Izhevsk, 2003, 424 pp.

[2] A. O. Ivanov, A. A. Tuzhilin, “One-dimensional Gromov minimal filling problem”, Sb. Math., 203:5 (2012), 677–726 | DOI | DOI | MR | Zbl

[3] A. Yu. Eremin, “A formula for the weight of a minimal filling of a finite metric space”, Sb. Math., 204:9 (2013), 1285–1306 | DOI | DOI | MR | Zbl

[4] B. B. Bednov, P. A. Borodin, “Banach spaces that realize minimal fillings”, Sb. Math., 205:4 (2014), 459–475 | DOI | DOI | MR | Zbl

[5] V. I. Bogachev, O. G. Smolyanov, Deistvitelnyi i funktsionalnyi analiz: universitetskii kurs, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2009, 724 pp.

[6] B. B. Bednov, “Steiner points in the space of continuous functions”, Moscow Univ. Math. Bull., 66:6 (2011), 255–259 | DOI | MR | Zbl

[7] G. Sh. Rubinshtein, “Ob odnoi ekstremalnoi zadache v lineinom normirovannom prostranstve”, Sib. matem. zhurn., 6:3 (1965), 711–714 | MR | Zbl

[8] J. Lindenstrauss, Extension of compact operators, Mem. Amer. Math. Soc., 48, Amer. Math. Soc., Providence, RI, 1964, 112 pp. | MR | Zbl

[9] Ȧ. Lima, “Intersection properties of balls and subspaces in Banach spaces”, Trans. Amer. Math. Soc., 227 (1977), 1–62 | DOI | MR | Zbl