The length of a~minimal filling of star type
Sbornik. Mathematics, Tome 207 (2016) no. 8, pp. 1064-1078

Voir la notice de l'article provenant de la source Math-Net.Ru

The length of a minimal filling of star type for an arbitrary finite metric space is expressed as a function of the distances between points of this space. Bibliography: 9 titles.
Keywords: Banach space, shortest network, minimal filling, Steiner point.
@article{SM_2016_207_8_a1,
     author = {B. B. Bednov},
     title = {The length of a~minimal filling of star type},
     journal = {Sbornik. Mathematics},
     pages = {1064--1078},
     publisher = {mathdoc},
     volume = {207},
     number = {8},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_8_a1/}
}
TY  - JOUR
AU  - B. B. Bednov
TI  - The length of a~minimal filling of star type
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1064
EP  - 1078
VL  - 207
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_8_a1/
LA  - en
ID  - SM_2016_207_8_a1
ER  - 
%0 Journal Article
%A B. B. Bednov
%T The length of a~minimal filling of star type
%J Sbornik. Mathematics
%D 2016
%P 1064-1078
%V 207
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2016_207_8_a1/
%G en
%F SM_2016_207_8_a1
B. B. Bednov. The length of a~minimal filling of star type. Sbornik. Mathematics, Tome 207 (2016) no. 8, pp. 1064-1078. http://geodesic.mathdoc.fr/item/SM_2016_207_8_a1/