, $r\geqslant1$, $f\in W^{r,p(\cdot)}_{2\pi}$ and the Dini-Lipschitz condition holds, then $$ |f(x)-V_m^n(f,x)|\leqslant\frac{c_r(p)}{m+1}\sum_{k=n}^{n+m}\frac{E_k(f^{(r)})_{p(\cdot)}}{(k+1)^{r-{{1}/{p(x)}}}}, $$ where $E_k(g)_{p(\cdot)}$ stands for the best approximation to $g\in L^{p(\cdot)}_{2\pi}$ by trigonometric polynomials of order $k$. Bibliography: 19 titles.
Mots-clés : approximation of functions by de la Vallée-Poussin means.
@article{SM_2016_207_7_a5,
author = {I. I. Sharapudinov},
title = {Approximation of functions in variable-exponent {Lebesgue} and {Sobolev} spaces by de la {Vall\'ee-Poussin} means},
journal = {Sbornik. Mathematics},
pages = {1010--1036},
year = {2016},
volume = {207},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2016_207_7_a5/}
}
TY - JOUR AU - I. I. Sharapudinov TI - Approximation of functions in variable-exponent Lebesgue and Sobolev spaces by de la Vallée-Poussin means JO - Sbornik. Mathematics PY - 2016 SP - 1010 EP - 1036 VL - 207 IS - 7 UR - http://geodesic.mathdoc.fr/item/SM_2016_207_7_a5/ LA - en ID - SM_2016_207_7_a5 ER -
I. I. Sharapudinov. Approximation of functions in variable-exponent Lebesgue and Sobolev spaces by de la Vallée-Poussin means. Sbornik. Mathematics, Tome 207 (2016) no. 7, pp. 1010-1036. http://geodesic.mathdoc.fr/item/SM_2016_207_7_a5/
[1] I. I. Sharapudinov, “Uniform boundedness in $L^p$ $(p=p(x))$ of some families of convolution operators”, Math. Notes, 59:2 (1996), 205–212 | DOI | DOI | MR | Zbl
[2] I. I. Sharapudinov, “Nekotorye voprosy teorii priblizheniya v prostranstvakh $L^{p(x)}(E)$”, Anal. Math., 33:2 (2007), 135–153 | DOI | MR | Zbl
[3] A. Guven, D. M. Israfilov, “Trigonometric approximation in generalized Lebesgue spaces $L^{p(x)}$”, J. Math. Inequal., 4:2 (2010), 285–299 | DOI | MR | Zbl
[4] R. Akgün, “Polynomial approximation of functions in weighted Lebesgue and Smirnov spaces whith nonstandard growth”, Georgian Math. J., 18:2 (2011), 203–235 | MR | Zbl
[5] Ukrainian Math. J., 63:1 (2011), 1–26 | DOI | MR | Zbl
[6] R. Akgün, V. Kokilashvili, “On converse theorems of trigonometric approximation in weighted variable exponent Lebesgue spaces”, Banach J. Math. Anal., 5:1 (2011), 70–82 | DOI | MR | Zbl
[7] I. I. Sharapudinov, Nekotorye voprosy teorii priblizhenii v prostranstvakh Lebega s peremennym pokazatelem, Itogi nauki. Yug Rossii. Matem. monografiya, 5, YuMI VNTs RAN i RSO-A, Vladikavkaz, 2012, 267 pp.
[8] I. I. Sharapudinov, “Approksimativnye svoistva srednikh Valle Pussena na klassakh tipa Soboleva s peremennym pokazatelem”, Vestnik Dagestanskogo NTs RAN, 2012, no. 45, 5–13
[9] I. I. Sharapudinov, “Priblizhenie gladkikh funktsii v $L_{2\pi}^{p(x)}$ srednimi Valle Pussena”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 13:1(1) (2013), 45–49 | Zbl
[10] S. O. Chaichenko, “Best approximations of periodic functions in generalized Lebesgue spaces”, Ukrainian Math. J., 64:9 (2013), 1421–1439 | DOI | MR | Zbl
[11] I. I. Sharapudinov, “Approximation of functions in $L^{p(x)}_{2\pi}$ by trigonometric polynomials”, Izv. Math., 77:2 (2013), 407–434 | DOI | DOI | MR | Zbl
[12] S. M. Nikolskii, “O nekotorykh metodakh priblizheniya trigonometricheskimi summami”, Izv. AN SSSR. Ser. matem., 4:6 (1940), 509–520 | MR | Zbl
[13] A. V. Efimov, “O priblizhenii periodicheskikh funktsii summami Valle Pussena”, Izv. AN SSSR. Ser. matem., 23:5 (1959), 737–770 | MR | Zbl
[14] S. A. Telyakovskii, “O priblizhenii differentsiruemykh funktsii lineinymi srednimi ikh ryadov Fure”, Izv. AN SSSR. Ser. matem., 24:2 (1960), 213–242 | MR | Zbl
[15] V. V. Zhuk, Approksimatsiya periodicheskikh funktsii, LGU, L., 1982, 367 pp. | MR | Zbl
[16] M. G. Magomed-Kasumov, “Approksimativnye svoistva klassicheskikh srednikh Valle Pussena dlya kusochno gladkikh funktsii”, Vestnik Dagestanskogo NTs RAN, 2014, no. 54, 5–11
[17] I. I. Sharapudinov, “Topology of the space $\mathscr L^{p(t)}([0,1])$”, Math. Notes, 26:4 (1979), 796–806 | DOI | MR | Zbl
[18] I. I. Sharapudinov, “On the basis property of the Haar system in the space $\mathscr L^{p(t)}([0,1])$ and the principle of localization in the mean”, Math. USSR-Sb., 58:1 (1987), 279–287 | DOI | MR | Zbl
[19] A. Zygmund, Trigonometric series, v. I, 2nd ed., Cambridge Univ. Press, New York, 1959, xii+383 pp. | MR | MR | Zbl | Zbl