Approximation of functions in variable-exponent Lebesgue and Sobolev spaces by de la Vallée-Poussin means
Sbornik. Mathematics, Tome 207 (2016) no. 7, pp. 1010-1036 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the space $L^{p(\cdot)}_{2\pi}$ formed by $2\pi$-periodic real measurable functions $f$ for which the integral $\displaystyle\int_{-\pi}^{\pi}|f(x)|^{p(x)}\,dx$ exists and is finite, where $p(x)$, $1\leqslant p(x)$, is a $2\pi$-periodic measurable function (a variable exponent). If $p(x)\leqslant \overline p<\infty$, then the space $L^{p(\cdot)}_{2\pi}$ can be endowed with the structure of Banach space with the norm $$ \|f\|_{p(\cdot)}=\inf\biggl\{\alpha>0:\int_{-\pi}^{\pi}\biggl|\frac{f(x)}{\alpha}\biggr|^{p(x)}\,dx\leqslant1\biggr\}. $$ In the space $L^{p(\cdot)}_{2\pi}$ we distinguish a subspace $W^{r,p(\cdot)}_{2\pi}$ of Sobolev type. We investigate the approximation properties of the de la Vallée-Poussin means for trigonometric Fourier sums for functions in the space $W^{r,p(\cdot)}_{2\pi}$. In particular, we prove that if the variable exponent $p=p(x)$ satisfies the Dini-Lipschitz condition $|p(x)-p(y)|\ln\frac{2\pi}{|x-y|}\leqslant c$ and if $f\in W^{r,p(\cdot)}_{2\pi}$, then the de la Vallée-Poussin means $V_m^n(f)=V_m^n(f,x)$ with $n\leqslant am$ satisfy $$ \|f-V_m^n(f)\|_{p(\cdot)}\leqslant \frac{c_r(p,a)}{n^r}\Omega\biggl(f^{(r)}, \frac1n\biggr)_{p(\cdot)}, $$ where $\Omega(g,\delta)_{p(\cdot)}$ is a modulus of continuity of the function $g\in L^{p(\cdot)}_{2\pi}$ defined in terms of the Steklov functions. It is proved that if $1, $r\geqslant1$, $f\in W^{r,p(\cdot)}_{2\pi}$ and the Dini-Lipschitz condition holds, then $$ |f(x)-V_m^n(f,x)|\leqslant\frac{c_r(p)}{m+1}\sum_{k=n}^{n+m}\frac{E_k(f^{(r)})_{p(\cdot)}}{(k+1)^{r-{{1}/{p(x)}}}}, $$ where $E_k(g)_{p(\cdot)}$ stands for the best approximation to $g\in L^{p(\cdot)}_{2\pi}$ by trigonometric polynomials of order $k$. Bibliography: 19 titles.
Keywords: Lebesgue and Sobolev spaces with variable exponents
Mots-clés : approximation of functions by de la Vallée-Poussin means.
@article{SM_2016_207_7_a5,
     author = {I. I. Sharapudinov},
     title = {Approximation of functions in variable-exponent {Lebesgue} and {Sobolev} spaces by de la {Vall\'ee-Poussin} means},
     journal = {Sbornik. Mathematics},
     pages = {1010--1036},
     year = {2016},
     volume = {207},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_7_a5/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
TI  - Approximation of functions in variable-exponent Lebesgue and Sobolev spaces by de la Vallée-Poussin means
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 1010
EP  - 1036
VL  - 207
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_7_a5/
LA  - en
ID  - SM_2016_207_7_a5
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%T Approximation of functions in variable-exponent Lebesgue and Sobolev spaces by de la Vallée-Poussin means
%J Sbornik. Mathematics
%D 2016
%P 1010-1036
%V 207
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2016_207_7_a5/
%G en
%F SM_2016_207_7_a5
I. I. Sharapudinov. Approximation of functions in variable-exponent Lebesgue and Sobolev spaces by de la Vallée-Poussin means. Sbornik. Mathematics, Tome 207 (2016) no. 7, pp. 1010-1036. http://geodesic.mathdoc.fr/item/SM_2016_207_7_a5/

[1] I. I. Sharapudinov, “Uniform boundedness in $L^p$ $(p=p(x))$ of some families of convolution operators”, Math. Notes, 59:2 (1996), 205–212 | DOI | DOI | MR | Zbl

[2] I. I. Sharapudinov, “Nekotorye voprosy teorii priblizheniya v prostranstvakh $L^{p(x)}(E)$”, Anal. Math., 33:2 (2007), 135–153 | DOI | MR | Zbl

[3] A. Guven, D. M. Israfilov, “Trigonometric approximation in generalized Lebesgue spaces $L^{p(x)}$”, J. Math. Inequal., 4:2 (2010), 285–299 | DOI | MR | Zbl

[4] R. Akgün, “Polynomial approximation of functions in weighted Lebesgue and Smirnov spaces whith nonstandard growth”, Georgian Math. J., 18:2 (2011), 203–235 | MR | Zbl

[5] Ukrainian Math. J., 63:1 (2011), 1–26 | DOI | MR | Zbl

[6] R. Akgün, V. Kokilashvili, “On converse theorems of trigonometric approximation in weighted variable exponent Lebesgue spaces”, Banach J. Math. Anal., 5:1 (2011), 70–82 | DOI | MR | Zbl

[7] I. I. Sharapudinov, Nekotorye voprosy teorii priblizhenii v prostranstvakh Lebega s peremennym pokazatelem, Itogi nauki. Yug Rossii. Matem. monografiya, 5, YuMI VNTs RAN i RSO-A, Vladikavkaz, 2012, 267 pp.

[8] I. I. Sharapudinov, “Approksimativnye svoistva srednikh Valle Pussena na klassakh tipa Soboleva s peremennym pokazatelem”, Vestnik Dagestanskogo NTs RAN, 2012, no. 45, 5–13

[9] I. I. Sharapudinov, “Priblizhenie gladkikh funktsii v $L_{2\pi}^{p(x)}$ srednimi Valle Pussena”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 13:1(1) (2013), 45–49 | Zbl

[10] S. O. Chaichenko, “Best approximations of periodic functions in generalized Lebesgue spaces”, Ukrainian Math. J., 64:9 (2013), 1421–1439 | DOI | MR | Zbl

[11] I. I. Sharapudinov, “Approximation of functions in $L^{p(x)}_{2\pi}$ by trigonometric polynomials”, Izv. Math., 77:2 (2013), 407–434 | DOI | DOI | MR | Zbl

[12] S. M. Nikolskii, “O nekotorykh metodakh priblizheniya trigonometricheskimi summami”, Izv. AN SSSR. Ser. matem., 4:6 (1940), 509–520 | MR | Zbl

[13] A. V. Efimov, “O priblizhenii periodicheskikh funktsii summami Valle Pussena”, Izv. AN SSSR. Ser. matem., 23:5 (1959), 737–770 | MR | Zbl

[14] S. A. Telyakovskii, “O priblizhenii differentsiruemykh funktsii lineinymi srednimi ikh ryadov Fure”, Izv. AN SSSR. Ser. matem., 24:2 (1960), 213–242 | MR | Zbl

[15] V. V. Zhuk, Approksimatsiya periodicheskikh funktsii, LGU, L., 1982, 367 pp. | MR | Zbl

[16] M. G. Magomed-Kasumov, “Approksimativnye svoistva klassicheskikh srednikh Valle Pussena dlya kusochno gladkikh funktsii”, Vestnik Dagestanskogo NTs RAN, 2014, no. 54, 5–11

[17] I. I. Sharapudinov, “Topology of the space $\mathscr L^{p(t)}([0,1])$”, Math. Notes, 26:4 (1979), 796–806 | DOI | MR | Zbl

[18] I. I. Sharapudinov, “On the basis property of the Haar system in the space $\mathscr L^{p(t)}([0,1])$ and the principle of localization in the mean”, Math. USSR-Sb., 58:1 (1987), 279–287 | DOI | MR | Zbl

[19] A. Zygmund, Trigonometric series, v. I, 2nd ed., Cambridge Univ. Press, New York, 1959, xii+383 pp. | MR | MR | Zbl | Zbl