Mots-clés : birational map
@article{SM_2016_207_7_a4,
author = {Yu. G. Prokhorov},
title = {Singular {Fano} threefolds of genus~12},
journal = {Sbornik. Mathematics},
pages = {983--1009},
year = {2016},
volume = {207},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2016_207_7_a4/}
}
Yu. G. Prokhorov. Singular Fano threefolds of genus 12. Sbornik. Mathematics, Tome 207 (2016) no. 7, pp. 983-1009. http://geodesic.mathdoc.fr/item/SM_2016_207_7_a4/
[1] V. A. Iskovskikh, Yu. G. Prokhorov, “Fano varieties”, Algebraic geometry V, Encyclopaedia Math. Sci., 47, Springer-Verlag, Berlin, 1999, 1–247 | MR | MR | Zbl
[2] Y. Namikawa, “Smoothing Fano $3$-folds”, J. Algebraic Geom., 6:2 (1997), 307–324 | MR | Zbl
[3] “Fano 3-folds. II”, Math. USSR-Izv., 12:3 (1978), 469–506 | DOI | MR | Zbl
[4] S. Mukai, “Biregular classification of Fano $3$-folds and Fano manifolds of coindex $3$”, Proc. Nat. Acad. Sci. U.S.A., 86:9 (1989), 3000–3002 | DOI | MR | Zbl
[5] {S}ūgaku, 47:2 (1995), 125–144 | MR | Zbl
[6] Yu. G. Prokhorov, “On $G$-Fano threefolds”, Izv. Math., 79:4 (2015), 795–808 | DOI | DOI | MR | Zbl
[7] P. Jahnke, T. Peternell, I. Radloff, “Threefolds with big and nef anticanonical bundles. II”, Cent. Eur. J. Math., 9:3 (2011), 449–488 | DOI | MR | Zbl
[8] K. Takeuchi, Weak Fano threefolds with del Pezzo fibration, 2009, arXiv: 0910.2188
[9] J. W. Cutrone, N. A. Marshburn, “Towards the classification of weak Fano threefolds with $\rho=2$”, Cent. Eur. J. Math., 11:9 (2013), 1552–1576 | DOI | MR | Zbl
[10] J. Blanc, S. Lamy, “Weak {F}ano threefolds obtained by blowing-up a space curve and construction of Sarkisov links”, Proc. Lond. Math. Soc. (3), 105:5 (2012), 1047–1075 | DOI | MR | Zbl
[11] Yu. Prokhorov, “Simple finite subgroups of the Cremona group of rank 3”, J. Algebraic Geom., 21:3 (2012), 563–600 | DOI | MR | Zbl
[12] Yu. G. Prokhorov, “On birational involutions of $\mathbb P^3$”, Izv. Math., 77:3 (2013), 627–648 | DOI | DOI | MR | Zbl
[13] Yu. Prokhorov, “$G$-Fano threefolds. I”, Adv. Geom., 13:3 (2013), 389–418 | DOI | MR | Zbl
[14] Yu. Prokhorov, “G-Fano threefolds. II”, Adv. Geom., 13:3 (2013), 419–434 | DOI | MR | Zbl
[15] J. G. Semple, L. Roth, Introduction to algebraic geometry, Clarendon Press, Oxford, 1949, xvi+446 pp. | MR | Zbl
[16] M. Furushima, “On the singular Fano threefold $V_{22}^*$ with a small Gorenstein singularity: (an example)”, Kumamoto J. Math., 19 (2006), 37–57 | MR | Zbl
[17] Y. Kawamata, “Crepant blowing-up of $3$-dimensional canonical singularities and its application to degenerations of surfaces”, Ann. of Math. (2), 127:1 (1988), 93–163 | DOI | MR | Zbl
[18] S. Cutkosky, “Elementary contractions of Gorenstein threefolds”, Math. Ann., 280:3 (1988), 521–525 | DOI | MR | Zbl
[19] A.-S. Kaloghiros, “The defect of Fano 3-folds”, J. Algebraic Geom., 20:1 (2011), 127–149 | DOI | MR | Zbl
[20] P. Jahnke, I. Radloff, “Gorenstein Fano threefolds with base points in the anticanonical system”, Compos. Math., 142:2 (2006), 422–432 | DOI | MR | Zbl
[21] Yu. G. Prokhorov, “On the degree of Fano threefolds with canonical Gorenstein singularities”, Sb. Math., 196:1 (2005), 77–114 | DOI | DOI | MR | Zbl
[22] Yu. G. Prokhorov, V. V. Shokurov, “Towards the second main theorem on complements”, J. Algebraic Geom., 18:1 (2009), 151–199 | DOI | MR | Zbl
[23] P. Jahnke, I. Radloff, “Terminal Fano threefolds and their smoothings”, Math. Z., 269:3-4 (2011), 1129–1136 | DOI | MR | Zbl
[24] Y. Kachi, “Flips from $4$-folds with isolated complete intersection singularities”, Amer. J. Math., 120:1 (1998), 43–102 | DOI | MR | Zbl
[25] Y. Kawamata, K. Matsuda, K. Matsuki, “Introduction to the minimal model problem”, Algebraic geometry (Sendai, 1985), 10, North-Holland, Amsterdam, 1987, 283–360 | MR | Zbl
[26] S. Mori, S. Mukai, “Classification of Fano $3$-folds with $B_2\geqslant 2$”, Manuscripta Math., 36:2 (1981/82), 147–162 ; Erratum: Manuscripta Math., 110:3 (2003), 407 | DOI | MR | Zbl | DOI | MR
[27] R. Hartshorne, Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York–Heidelberg, 1977, xvi+496 pp. | MR | MR | Zbl | Zbl
[28] R. Friedman, Algebraic surfaces and holomorphic vector bundles, Universitext, Springer-Verlag, New York, 1998 | DOI | MR | Zbl
[29] F. Hidaka, K. Watanabe, “Normal Gorenstein surfaces with ample anti-canonical divisor”, Tokyo J. Math., 4:2 (1981), 319–330 | DOI | MR | Zbl
[30] M. Furushima, N. Nakayama, “The family of lines on the Fano threefold $V_5$”, Nagoya Math. J., 116 (1989), 111–122 | MR | Zbl
[31] W. Barth, “Moduli of vector bundles on the projective plane”, Invent. Math., 42 (1977), 63–91 | DOI | MR | Zbl