Singular Fano threefolds of genus 12
Sbornik. Mathematics, Tome 207 (2016) no. 7, pp. 983-1009 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study singular Fano threefolds of type $V_{22}$. Bibliography: 31 titles.
Keywords: Fano variety, blowup.
Mots-clés : birational map
@article{SM_2016_207_7_a4,
     author = {Yu. G. Prokhorov},
     title = {Singular {Fano} threefolds of genus~12},
     journal = {Sbornik. Mathematics},
     pages = {983--1009},
     year = {2016},
     volume = {207},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_7_a4/}
}
TY  - JOUR
AU  - Yu. G. Prokhorov
TI  - Singular Fano threefolds of genus 12
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 983
EP  - 1009
VL  - 207
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_7_a4/
LA  - en
ID  - SM_2016_207_7_a4
ER  - 
%0 Journal Article
%A Yu. G. Prokhorov
%T Singular Fano threefolds of genus 12
%J Sbornik. Mathematics
%D 2016
%P 983-1009
%V 207
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2016_207_7_a4/
%G en
%F SM_2016_207_7_a4
Yu. G. Prokhorov. Singular Fano threefolds of genus 12. Sbornik. Mathematics, Tome 207 (2016) no. 7, pp. 983-1009. http://geodesic.mathdoc.fr/item/SM_2016_207_7_a4/

[1] V. A. Iskovskikh, Yu. G. Prokhorov, “Fano varieties”, Algebraic geometry V, Encyclopaedia Math. Sci., 47, Springer-Verlag, Berlin, 1999, 1–247 | MR | MR | Zbl

[2] Y. Namikawa, “Smoothing Fano $3$-folds”, J. Algebraic Geom., 6:2 (1997), 307–324 | MR | Zbl

[3] “Fano 3-folds. II”, Math. USSR-Izv., 12:3 (1978), 469–506 | DOI | MR | Zbl

[4] S. Mukai, “Biregular classification of Fano $3$-folds and Fano manifolds of coindex $3$”, Proc. Nat. Acad. Sci. U.S.A., 86:9 (1989), 3000–3002 | DOI | MR | Zbl

[5] {S}ūgaku, 47:2 (1995), 125–144 | MR | Zbl

[6] Yu. G. Prokhorov, “On $G$-Fano threefolds”, Izv. Math., 79:4 (2015), 795–808 | DOI | DOI | MR | Zbl

[7] P. Jahnke, T. Peternell, I. Radloff, “Threefolds with big and nef anticanonical bundles. II”, Cent. Eur. J. Math., 9:3 (2011), 449–488 | DOI | MR | Zbl

[8] K. Takeuchi, Weak Fano threefolds with del Pezzo fibration, 2009, arXiv: 0910.2188

[9] J. W. Cutrone, N. A. Marshburn, “Towards the classification of weak Fano threefolds with $\rho=2$”, Cent. Eur. J. Math., 11:9 (2013), 1552–1576 | DOI | MR | Zbl

[10] J. Blanc, S. Lamy, “Weak {F}ano threefolds obtained by blowing-up a space curve and construction of Sarkisov links”, Proc. Lond. Math. Soc. (3), 105:5 (2012), 1047–1075 | DOI | MR | Zbl

[11] Yu. Prokhorov, “Simple finite subgroups of the Cremona group of rank 3”, J. Algebraic Geom., 21:3 (2012), 563–600 | DOI | MR | Zbl

[12] Yu. G. Prokhorov, “On birational involutions of $\mathbb P^3$”, Izv. Math., 77:3 (2013), 627–648 | DOI | DOI | MR | Zbl

[13] Yu. Prokhorov, “$G$-Fano threefolds. I”, Adv. Geom., 13:3 (2013), 389–418 | DOI | MR | Zbl

[14] Yu. Prokhorov, “G-Fano threefolds. II”, Adv. Geom., 13:3 (2013), 419–434 | DOI | MR | Zbl

[15] J. G. Semple, L. Roth, Introduction to algebraic geometry, Clarendon Press, Oxford, 1949, xvi+446 pp. | MR | Zbl

[16] M. Furushima, “On the singular Fano threefold $V_{22}^*$ with a small Gorenstein singularity: (an example)”, Kumamoto J. Math., 19 (2006), 37–57 | MR | Zbl

[17] Y. Kawamata, “Crepant blowing-up of $3$-dimensional canonical singularities and its application to degenerations of surfaces”, Ann. of Math. (2), 127:1 (1988), 93–163 | DOI | MR | Zbl

[18] S. Cutkosky, “Elementary contractions of Gorenstein threefolds”, Math. Ann., 280:3 (1988), 521–525 | DOI | MR | Zbl

[19] A.-S. Kaloghiros, “The defect of Fano 3-folds”, J. Algebraic Geom., 20:1 (2011), 127–149 | DOI | MR | Zbl

[20] P. Jahnke, I. Radloff, “Gorenstein Fano threefolds with base points in the anticanonical system”, Compos. Math., 142:2 (2006), 422–432 | DOI | MR | Zbl

[21] Yu. G. Prokhorov, “On the degree of Fano threefolds with canonical Gorenstein singularities”, Sb. Math., 196:1 (2005), 77–114 | DOI | DOI | MR | Zbl

[22] Yu. G. Prokhorov, V. V. Shokurov, “Towards the second main theorem on complements”, J. Algebraic Geom., 18:1 (2009), 151–199 | DOI | MR | Zbl

[23] P. Jahnke, I. Radloff, “Terminal Fano threefolds and their smoothings”, Math. Z., 269:3-4 (2011), 1129–1136 | DOI | MR | Zbl

[24] Y. Kachi, “Flips from $4$-folds with isolated complete intersection singularities”, Amer. J. Math., 120:1 (1998), 43–102 | DOI | MR | Zbl

[25] Y. Kawamata, K. Matsuda, K. Matsuki, “Introduction to the minimal model problem”, Algebraic geometry (Sendai, 1985), 10, North-Holland, Amsterdam, 1987, 283–360 | MR | Zbl

[26] S. Mori, S. Mukai, “Classification of Fano $3$-folds with $B_2\geqslant 2$”, Manuscripta Math., 36:2 (1981/82), 147–162 ; Erratum: Manuscripta Math., 110:3 (2003), 407 | DOI | MR | Zbl | DOI | MR

[27] R. Hartshorne, Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York–Heidelberg, 1977, xvi+496 pp. | MR | MR | Zbl | Zbl

[28] R. Friedman, Algebraic surfaces and holomorphic vector bundles, Universitext, Springer-Verlag, New York, 1998 | DOI | MR | Zbl

[29] F. Hidaka, K. Watanabe, “Normal Gorenstein surfaces with ample anti-canonical divisor”, Tokyo J. Math., 4:2 (1981), 319–330 | DOI | MR | Zbl

[30] M. Furushima, N. Nakayama, “The family of lines on the Fano threefold $V_5$”, Nagoya Math. J., 116 (1989), 111–122 | MR | Zbl

[31] W. Barth, “Moduli of vector bundles on the projective plane”, Invent. Math., 42 (1977), 63–91 | DOI | MR | Zbl