Modules of Gorenstein dimension zero over graph algebras
Sbornik. Mathematics, Tome 207 (2016) no. 7, pp. 964-982 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that nonfree modules of Gorenstein dimension zero over a graph algebra exist if and only if the graph is a tree. A classification of such modules is given. Bibliography: 19 titles.
Keywords: Gorenstein dimension, $\operatorname{CI}$-dimension.
@article{SM_2016_207_7_a3,
     author = {E. S. Golod and G. A. Pogudin},
     title = {Modules of {Gorenstein} dimension zero over graph algebras},
     journal = {Sbornik. Mathematics},
     pages = {964--982},
     year = {2016},
     volume = {207},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_7_a3/}
}
TY  - JOUR
AU  - E. S. Golod
AU  - G. A. Pogudin
TI  - Modules of Gorenstein dimension zero over graph algebras
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 964
EP  - 982
VL  - 207
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_7_a3/
LA  - en
ID  - SM_2016_207_7_a3
ER  - 
%0 Journal Article
%A E. S. Golod
%A G. A. Pogudin
%T Modules of Gorenstein dimension zero over graph algebras
%J Sbornik. Mathematics
%D 2016
%P 964-982
%V 207
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2016_207_7_a3/
%G en
%F SM_2016_207_7_a3
E. S. Golod; G. A. Pogudin. Modules of Gorenstein dimension zero over graph algebras. Sbornik. Mathematics, Tome 207 (2016) no. 7, pp. 964-982. http://geodesic.mathdoc.fr/item/SM_2016_207_7_a3/

[1] Y. Yoshino, Cohen–Macaulay modules over Cohen–Macaulay rings, London Math. Soc. Lecture Note Ser., 146, Cambridge Univ. Press, Cambridge, 1990, viii+177 pp. | MR | Zbl

[2] R. Takahashi, “On the number of indecomposable totally reflexive modules”, Bull. Lond. Math. Soc., 39:3 (2007), 487–492 | DOI | MR | Zbl

[3] R. Takahashi, “An uncountably infinite number of indecomposable totally reflexive modules”, Nagoya Math. J., 187 (2007), 35–48 | MR | Zbl

[4] L. W. Christensen, Gorenstein dimensions, Lecture Notes in Math., 1747, Springer-Verlag, Berlin, 2000, viii+204 pp. | DOI | MR | Zbl

[5] Y. Yoshino, “Modules of G-dimension zero over local rings with the cube of maximal ideal being zero”, Commutative algebra, singularities and computer algebra (Sinaia, 2002), NATO Sci. Ser. II Math. Phys. Chem., 115, Kluwer Acad. Publ., Dordrecht, 2003, 255–273 | DOI | MR | Zbl

[6] R. Takahashi, “On the category of modules of Gorenstein dimension zero”, Math. Z., 251:2 (2005), 249–256 | DOI | MR | Zbl

[7] R. Takahashi, “On the category of modules of Gorenstein dimension zero. II”, J. Algebra, 278:1 (2004), 402–410 | DOI | MR | Zbl

[8] R. Takahashi, “Modules of G-dimension zero over local rings of depth two”, Illinois J. Math., 48:3 (2004), 945–952 | MR | Zbl

[9] O. Veliche, “Construction of modules with finite homological dimensions”, J. Algebra, 250:2 (2002), 427–449 | DOI | MR | Zbl

[10] A. Beilinson, V. Ginzburg, W. Soergel, “Koszul duality patterns in representation theory”, J. Amer. Math. Soc, 9:2 (1996), 473–527 | DOI | MR | Zbl

[11] H. Holm, “Construction of totally reflexive modules from an exact pair of zero divisors”, Bull. Lond. Math. Soc., 43:2 (2011), 278–288 | Zbl

[12] O. Celikbas, M. Gheibi, R. Takahashi, “Brauer–Thrall for totally reflexive modules over local rings of higher dimension”, Algebr. Represent. Theory, 17:3 (2014), 997–1008 | Zbl

[13] L. W. Christensen, D. A. Jorgensen, H. Rahmati, J. Striuli, R. Wiegand, “Brauer–Thrall for totally reflexive modules”, J. Algebra, 350:1 (2012), 340–373 | DOI | Zbl

[14] H. Rahmati, J. Striuli, R. Wiegand, “A construction of totally reflexive modules”, Algebr. Represent. Theory, 19:1 (2016), 103–111 | DOI | Zbl

[15] R. P. Stanley, Combinatorics and commutative algebra, Progr. in Math., 41, Birkhäuser, Basel, 1996 | Zbl

[16] L. L. Avramov, V. N. Gasharov, I. V. Peeva, “Complete intersection dimension”, Inst. Hautes Études Sci. Publ. Math., 86 (1997), 67–114 | DOI | MR | Zbl

[17] L. L. Avramov, “Infinite free resolutions”, Six lectures on commutative algebra (Bellaterra, 1996), Progr. Math., 166, Birkhäuser, Basel, 1998, 1–118 | MR | Zbl

[18] L. L. Avramov, Li-Chuan Sun, “Cohomology operators defined by a deformation”, J. Algebra, 204:2 (1998), 684–710 | DOI | MR | Zbl

[19] C. Lofwall, “On the subalgebra generated by the one-dimensional elements in the Yoneda Ext-algebra”, Algebra, algebraic topology and their interactions (Stockholm, 1983), Lecture Notes in Math., 1183, Springer-Verlag, Berlin, 1986, 291–338 | DOI | MR | Zbl