Spectral analysis on the group of conformal automorphisms of the unit disc
Sbornik. Mathematics, Tome 207 (2016) no. 7, pp. 942-963

Voir la notice de l'article provenant de la source Math-Net.Ru

For the group $G$ of conformal automorphisms of the unit disc the problem of spectral analysis is considered for subspaces $\mathscr{U}\subset C(G)$ which are invariant under right shifts by elements of $G$ and conjugations by elements of the rotation subgroup. It turns out that, in contrast to subspaces of $C(G)$ which are merely invariant under right shifts, $\mathscr{U}$ contains a minimal subspace with the above properties. Bibliography: 26 titles.
Keywords: spectral analysis, invariant subspace, Schwartz theorem.
Mots-clés : conformal automorphism group
@article{SM_2016_207_7_a2,
     author = {V. V. Volchkov and Vit. V. Volchkov},
     title = {Spectral analysis on the group of conformal automorphisms of the unit disc},
     journal = {Sbornik. Mathematics},
     pages = {942--963},
     publisher = {mathdoc},
     volume = {207},
     number = {7},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_7_a2/}
}
TY  - JOUR
AU  - V. V. Volchkov
AU  - Vit. V. Volchkov
TI  - Spectral analysis on the group of conformal automorphisms of the unit disc
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 942
EP  - 963
VL  - 207
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_7_a2/
LA  - en
ID  - SM_2016_207_7_a2
ER  - 
%0 Journal Article
%A V. V. Volchkov
%A Vit. V. Volchkov
%T Spectral analysis on the group of conformal automorphisms of the unit disc
%J Sbornik. Mathematics
%D 2016
%P 942-963
%V 207
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2016_207_7_a2/
%G en
%F SM_2016_207_7_a2
V. V. Volchkov; Vit. V. Volchkov. Spectral analysis on the group of conformal automorphisms of the unit disc. Sbornik. Mathematics, Tome 207 (2016) no. 7, pp. 942-963. http://geodesic.mathdoc.fr/item/SM_2016_207_7_a2/