Spectral analysis on the group of conformal automorphisms of the unit disc
Sbornik. Mathematics, Tome 207 (2016) no. 7, pp. 942-963 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the group $G$ of conformal automorphisms of the unit disc the problem of spectral analysis is considered for subspaces $\mathscr{U}\subset C(G)$ which are invariant under right shifts by elements of $G$ and conjugations by elements of the rotation subgroup. It turns out that, in contrast to subspaces of $C(G)$ which are merely invariant under right shifts, $\mathscr{U}$ contains a minimal subspace with the above properties. Bibliography: 26 titles.
Keywords: spectral analysis, invariant subspace, Schwartz theorem.
Mots-clés : conformal automorphism group
@article{SM_2016_207_7_a2,
     author = {V. V. Volchkov and Vit. V. Volchkov},
     title = {Spectral analysis on the group of conformal automorphisms of the unit disc},
     journal = {Sbornik. Mathematics},
     pages = {942--963},
     year = {2016},
     volume = {207},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_7_a2/}
}
TY  - JOUR
AU  - V. V. Volchkov
AU  - Vit. V. Volchkov
TI  - Spectral analysis on the group of conformal automorphisms of the unit disc
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 942
EP  - 963
VL  - 207
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_7_a2/
LA  - en
ID  - SM_2016_207_7_a2
ER  - 
%0 Journal Article
%A V. V. Volchkov
%A Vit. V. Volchkov
%T Spectral analysis on the group of conformal automorphisms of the unit disc
%J Sbornik. Mathematics
%D 2016
%P 942-963
%V 207
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2016_207_7_a2/
%G en
%F SM_2016_207_7_a2
V. V. Volchkov; Vit. V. Volchkov. Spectral analysis on the group of conformal automorphisms of the unit disc. Sbornik. Mathematics, Tome 207 (2016) no. 7, pp. 942-963. http://geodesic.mathdoc.fr/item/SM_2016_207_7_a2/

[1] L. Schwartz, “Théorie générale des fonctions moyenne-périodiques”, Ann. of Math. (2), 48:4 (1947), 857–929 | DOI | MR | Zbl

[2] D. I. Gurevich, “Counterexamples to a problem of L. Schwartz”, Funct. Anal. Appl., 9:2 (1975), 116–120 | DOI | MR | Zbl

[3] C. A. Berenstein, D. C. Struppa, “Complex analysis and convolution equations”, Several complex variables V. Complex analysis in partial differential equations and mathematical physics, Encyclopaedia Math. Sci., 54, Springer-Verlag, Berlin, 1993, 1–108 | DOI | MR | Zbl

[4] V. V. Volchkov, Integral geometry and convolution equations, Kluwer Acad. Publ., Dordrecht, 2003, xii+454 pp. | DOI | MR | Zbl

[5] V. V. Volchkov, Vit. V. Volchkov, Harmonic analysis of mean periodic functions on symmetric spaces and the Heisenberg group, Springer Monogr. Math., Springer-Verlag, London, 2009, xii+671 pp. | DOI | MR | Zbl

[6] V. V. Volchkov, Vit. V. Volchkov, Offbeat integral geometry on symmetric spaces, Birkhäuser/Springer Basel AG, Basel, 2013, x+592 pp. | DOI | MR | Zbl

[7] L. Brown, B. M. Schreiber, B. A. Taylor, “Spectral synthesis and the Pompeiu problem”, Ann. Inst. Fourier (Grenoble), 23:3 (1973), 125–154 | DOI | MR | Zbl

[8] L. Zalcman, “A bibliographic survey of the Pompeiu problem”, Approximation by solutions of partial differential equations (Hanstholm, 1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 365, Kluwer Acad. Publ., Dordrecht, 1992, 185–194 | MR | Zbl

[9] L. Zalcman, “Supplementary bibliography to “A bibliographic survey of the Pompeiu problem””, Radon transforms and tomography (South Hadley, MA, 2000), Contemp. Math., 278, Amer. Math. Soc., Providence, RI, 2001, 69–74 | DOI | MR | Zbl

[10] S. C. Bagchi, A. Sitaram, “Spherical mean periodic functions on semisimple Lie groups”, Pacific J. Math., 84:2 (1979), 241–250 | DOI | MR | Zbl

[11] S. C. Bagchi, A. Sitaram, “The Pompeiu problem revisited”, Enseign. Math. (2), 36:1–2 (1990), 67–91 | MR | Zbl

[12] S. Helgason, Differential geometry and symmetric spaces, Pure Appl. Math., XII, Academic Press, New York–London, 1962, xiv+486 pp. | MR | Zbl | Zbl

[13] N. Peyerimhoff, E. Samiou, “Spherical spectral synthesis and two-radius theorems on Damek–Ricci spaces”, Ark. Mat., 48:1 (2010), 131–147 | DOI | MR | Zbl

[14] S. Thangavelu, “Mean periodic functions on phase space and the Pompeiu problem with a twist”, Ann. Inst. Fourier (Grenoble), 45:4 (1995), 1007–1035 | DOI | MR | Zbl

[15] Y. Weit, “On Schwartz's theorem for the motion group”, Ann. Inst. Fourier (Grenoble), 30:1 (1980), 91–107 | DOI | MR | Zbl

[16] L. Ehrenpreis, F. I. Mautner, “Some properties of the Fourier transform on semi-simple Lie groups. II”, Trans. Amer. Math. Soc., 84:1 (1957), 1–55 | DOI | MR | Zbl

[17] Y. Benyamini, Y. Weit, “Spaces of continuous functions invariant with respect to radial action”, Amer. J. Math., 112:4 (1990), 631–656 | DOI | MR | Zbl

[18] N. Ja. Vilenkin, Special functions and the theory of group representations, Transl. Math. Monogr., 22, Amer. Math. Soc., Providence, RI, 1968, x+613 pp. | MR | MR | Zbl | Zbl

[19] V. V. Volchkov, Vit. V. Volchkov, “Convolution equations in many-dimensional domains and on the Heisenberg reduced group”, Sb. Math., 199:8 (2008), 1139–1168 | DOI | DOI | MR | Zbl

[20] S. Helgason, Groups and geometric analysis. Integral geometry, invariant differential operators, and spherical functions, Pure Appl. Math., 113, Academic Press, Orlando, FL, 1984, xix+654 pp. | MR | MR | Zbl

[21] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, Based, in part, on notes left by H. Bateman, v. 1, McGraw-Hill, New York–Toronto–London, 1953, xxvi+302 pp. | MR | MR | Zbl | Zbl

[22] A. F. Nikiforov, V. B. Uvarov, Special functions of mathematical physics. A unified introduction with applications, Birkhäuser, Basel, 1988, xviii+427 pp. | MR | MR | Zbl | Zbl

[23] L. Hörmander, The analysis of linear partial differential operators, v. I, Grundlehren Math. Wiss., 256, Distribution theory and Fourier analysis, Springer-Verlag, Berlin, 1983, ix+391 pp. | DOI | MR | MR | Zbl | Zbl

[24] S. Helgason, Integral geometry and Radon transforms, Springer-Verlag, New York, 2011, xiv+301 pp. | DOI | MR | Zbl

[25] T. H. Koornwinder, “Jacobi functions and analysis on noncompact semisimple Lie groups”, Special functions: group theoretical aspects and applications, Math. Appl., Reidel, Dordrecht, 1984, 1–85 | MR | Zbl

[26] S. Lang, $\operatorname{SL}_2(\mathbb{R})$, Addison-Wesley, Reading–London–Amsterdam, 1975, xvi+428 pp. | MR | MR | Zbl