Geodesics in the sub-Riemannian problem on the group $\mathrm{SO}(3)$
Sbornik. Mathematics, Tome 207 (2016) no. 7, pp. 915-941

Voir la notice de l'article provenant de la source Math-Net.Ru

Geodesics of left-invariant sub-Riemannian structures are considered on the group $\mathrm{SO}(3)$. A complete description of periodic geodesics, their elementary properties, certain necessary conditions for minimality and estimates for the cut time and the diameter of the metric are presented. Bibliography: 32 titles.
Keywords: sub-Riemannian geometry, almost Riemannian geometry, optimal control, geodesic curves, cut time.
@article{SM_2016_207_7_a1,
     author = {I. Yu. Beschastnyi and Yu. L. Sachkov},
     title = {Geodesics in the {sub-Riemannian} problem on the group $\mathrm{SO}(3)$},
     journal = {Sbornik. Mathematics},
     pages = {915--941},
     publisher = {mathdoc},
     volume = {207},
     number = {7},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_7_a1/}
}
TY  - JOUR
AU  - I. Yu. Beschastnyi
AU  - Yu. L. Sachkov
TI  - Geodesics in the sub-Riemannian problem on the group $\mathrm{SO}(3)$
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 915
EP  - 941
VL  - 207
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_7_a1/
LA  - en
ID  - SM_2016_207_7_a1
ER  - 
%0 Journal Article
%A I. Yu. Beschastnyi
%A Yu. L. Sachkov
%T Geodesics in the sub-Riemannian problem on the group $\mathrm{SO}(3)$
%J Sbornik. Mathematics
%D 2016
%P 915-941
%V 207
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2016_207_7_a1/
%G en
%F SM_2016_207_7_a1
I. Yu. Beschastnyi; Yu. L. Sachkov. Geodesics in the sub-Riemannian problem on the group $\mathrm{SO}(3)$. Sbornik. Mathematics, Tome 207 (2016) no. 7, pp. 915-941. http://geodesic.mathdoc.fr/item/SM_2016_207_7_a1/