@article{SM_2016_207_7_a0,
author = {A. V. Belyaev},
title = {Representation of solutions to the problem of the motion of a~heavy rigid body in the {Kovalevskaya} case in terms of {Weierstrass} $\zeta$- and $\wp$-functions and nonintegrability of the {Hess} case by quadratures},
journal = {Sbornik. Mathematics},
pages = {889--914},
year = {2016},
volume = {207},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2016_207_7_a0/}
}
TY - JOUR AU - A. V. Belyaev TI - Representation of solutions to the problem of the motion of a heavy rigid body in the Kovalevskaya case in terms of Weierstrass $\zeta$- and $\wp$-functions and nonintegrability of the Hess case by quadratures JO - Sbornik. Mathematics PY - 2016 SP - 889 EP - 914 VL - 207 IS - 7 UR - http://geodesic.mathdoc.fr/item/SM_2016_207_7_a0/ LA - en ID - SM_2016_207_7_a0 ER -
%0 Journal Article %A A. V. Belyaev %T Representation of solutions to the problem of the motion of a heavy rigid body in the Kovalevskaya case in terms of Weierstrass $\zeta$- and $\wp$-functions and nonintegrability of the Hess case by quadratures %J Sbornik. Mathematics %D 2016 %P 889-914 %V 207 %N 7 %U http://geodesic.mathdoc.fr/item/SM_2016_207_7_a0/ %G en %F SM_2016_207_7_a0
A. V. Belyaev. Representation of solutions to the problem of the motion of a heavy rigid body in the Kovalevskaya case in terms of Weierstrass $\zeta$- and $\wp$-functions and nonintegrability of the Hess case by quadratures. Sbornik. Mathematics, Tome 207 (2016) no. 7, pp. 889-914. http://geodesic.mathdoc.fr/item/SM_2016_207_7_a0/
[1] C. V. Kovalevskaya, Nauchnye raboty, Izd-vo AN SSSR, M., 1948, 368 pp. | MR | Zbl
[2] B. A. Dubrovin, “Theta functions and non-linear equations”, Russian Math. Surveys, 36:2 (1981), 11–92 | DOI | MR | Zbl
[3] A. M. Perelomov, “Lax representations for the systems of S. Kowalevskaya type”, Comm. Math. Phys., 81:2 (1981), 239–241 | DOI | MR | Zbl
[4] V. Z. Enol'skii, “On the two-gap Lame potentials and elliptic solutions of the Kovalevskaja problem connected with them”, Phys. Lett. A, 100:9 (1984), 463–466 | DOI | MR
[5] L. Haine, E. Horozov, “A Lax pair for Kowalevski's top”, Phys. D, 29:1–2 (1987), 173–180 | DOI | MR | Zbl
[6] A. I. Bobenko, A. G. Reyman, M. A. Semenov-Tian-Shansky, “The Kowalewski top 99 years later: a Lax pair, generalizations and explicit solutions”, Comm. Math. Phys., 122:2 (1989), 321–354 | DOI | MR | Zbl
[7] A. V. Belyaev, “On the full list of finite-valued solutions of the Euler–Poisson equations having four first integrals”, Math. Nachr., 285:10 (2012), 1199–1229 | DOI | MR | Zbl
[8] A. V. Belyaev, “Asymptotic behaviour of singular points of solutions of the problem of heavy $n$-dimensional body motion in the Lagrange case”, Sb. Math., 202:11 (2011), 1617–1635 | DOI | DOI | MR | Zbl
[9] A. V. Belyaev, “On the general solution of the problem of the motion of a heavy rigid body in the Hess case”, Sb. Math., 206:5 (2015), 621–649 | DOI | DOI | MR | Zbl
[10] W. Hess, “Ueber die Euler'schen Bewegungsgleichungen und über eine neue partikuläre Lösung des Problems der Bewegung eines starren Körpers um einen festen Punkt”, Math. Ann., 37:2 (1890), 153–181 | DOI | MR | Zbl
[11] B. K. Mlodzeevskii, P. A. Nekrasov, “Ob usloviyakh suschestvovaniya asimptoticheskikh periodicheskikh dvizhenii v zadache Gessa”, Trudy otd. fiz. nauk obsch-va lyubit. estestvoznaniya, 6:1 (1893), 43–52
[12] P. A. Nekrasov', “Analiticheskoe izslѣdovanie odnogo sluchaya dvizheniya tyazhelago tverdago tѣla okolo nepodvizhnoi tochki”, Matem. sb., 18:2 (1896), 161–274
[13] V. Dragović, B. Gajić, “An L–A pair for the Hess–Apel'rot system and a new integrable case for the Euler–Poisson equations on $so(4)\times so(4)$”, Proc. Roy. Soc. Edinburgh Sect. A, 131:4 (2001), 845–855 | DOI | MR | Zbl
[14] V. I. Arnold, Mathematical methods of classical mechanics, Grad. Texts in Math., 60, Springer-Verlag, New York–Heidelberg, 1978, x+462 pp. | MR | MR | Zbl | Zbl
[15] S. V. Manakov, “Note on the integration of Euler's equations of the dynamics of an $n$-dimensional rigid body”, Funct. Anal. Appl., 10:4 (1976), 328–329 | DOI | MR | Zbl
[16] A. S. Mishchenko, A. T. Fomenko, “Generalized Liouville method of integration of Hamiltonian systems”, Funct. Anal. Appl., 12:2 (1978), 113–121 | DOI | MR | Zbl
[17] A. S. Miščenko, A. T. Fomenko, “Euler equations on finite-dimensional Lie groups”, Math. USSR-Izv., 12:2 (1978), 371–389 | DOI | MR | Zbl
[18] M. Adler, P. van Moerbeke, “Completely integrable systems, Euclidean Lie algebras, and curves”, Adv. in Math., 38:3 (1980), 267–317 | DOI | MR | Zbl
[19] M. Adler, P. van Moerbeke, “Linearization of Hamiltonian system, Jacobi variaties, and represetation theory”, Adv. in Math., 38:3 (1980), 318–379 | DOI | MR | Zbl
[20] A. G. Reiman, M. A. Semenov-Tyan-Shanskii, Integriruemye sistemy. Teoretiko-gruppovoi podkhod, In-t kompyuternykh issledovanii, M.–Izhevsk, 2003, 352 pp.
[21] Yu. A. Arkhangelskii, Analiticheskaya dinamika tverdogo tela, Nauka, M., 1977, 328 pp. | MR
[22] A. Hurwitz, Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen, Herausgegeben und ergänzt durch einen Abschnitt über geometrische Funktionentheorie von R. Courant. Mit einem Anhang von H. Röhrl, Grundlehren Math. Wiss., 3, 4. Aufl., Springer-Verlag, Berlin–New York, 1964, xiii+706 pp. | MR | MR | Zbl | Zbl
[23] A. M. Perelomov, “Kovalevskaya top: an elementary approach”, Theoret. and Math. Phys., 131:2 (2002), 612–620 | DOI | DOI | MR | Zbl
[24] B. M. Levitan, V. V. Zhikov, Almost periodic functions and differential equations, Cambridge Univ. Press, Cambridge–New York, 1982, xi+211 pp. | MR | MR | Zbl | Zbl