Mots-clés : transvection.
@article{SM_2016_207_6_a5,
author = {D. A. Stepanov},
title = {Three-dimensional isolated quotient singularities in odd characteristic},
journal = {Sbornik. Mathematics},
pages = {873--887},
year = {2016},
volume = {207},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2016_207_6_a5/}
}
D. A. Stepanov. Three-dimensional isolated quotient singularities in odd characteristic. Sbornik. Mathematics, Tome 207 (2016) no. 6, pp. 873-887. http://geodesic.mathdoc.fr/item/SM_2016_207_6_a5/
[1] J. A. Wolf, Spaces of constant curvature, 3rd ed., Publish or Perish, Boston, MA, 1972, xv+408 pp. | MR | MR | Zbl | Zbl
[2] D. A. Stepanov, “Gorenstein isolated quotient singularities over $\mathbb C$”, Proc. Edinb. Math. Soc. (2), 57:3 (2014), 811–839 | DOI | MR | Zbl
[3] D. Lorenzini, “Wild quotient singularities of surfaces”, Math. Z., 275:1-2 (2013), 211–232 | DOI | MR | Zbl
[4] D. J. Benson, Polynomial invariants of finite groups, London Math. Soc. Lecture Note Ser., 190, Cambridge Univ. Press, Cambridge, 1993, x+118 pp. | DOI | MR | Zbl
[5] G. Kemper, G. Malle, “The finite irreducible linear groups with polynomial ring of invariants”, Transform. Groups, 2:1 (1997), 57–89 | DOI | MR | Zbl
[6] H. Nakajima, “Invariants of finite groups generated by pseudoreflections in positive characteristic”, Tsukuba J. Math., 3:1 (1979), 109–122 | MR | Zbl
[7] G. Kemper, “Loci in quotients by finite groups, pointwise stabilizers, and the Buchsbaum property”, J. Reine Angew. Math., 2002:547 (2002), 69–96 | DOI | MR | Zbl
[8] M. F. Atiyah, I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley, Reading–London-Don Mills, 1969, ix+128 pp. | MR | MR | Zbl | Zbl
[9] Ch. W. Curtis, I. Reiner, Representation theory of finite groups and associative algebras, Pure Appl. Math., 11, Interscience Publishers (John Wiley Sons), New York–London, 1962, xiv+685 pp. | MR | MR | Zbl
[10] H. H. Mitchell, “Determination of the ordinary and modular ternary linear groups”, Trans. Amer. Math. Soc., 12:2 (1911), 207–272 | DOI | MR | Zbl
[11] E. Cline, B. Parshall, L. Scott, “Cohomology of finite groups of Lie type. I”, Inst. Hautes Études Sci. Publ. Math., 1975, no. 45, 169–191 | DOI | MR | Zbl
[12] Chih-Han Sah, “Cohomology of split group extensions. II”, J. Algebra, 45:1 (1977), 17–68 | DOI | MR | Zbl
[13] R. M. Guralnik, “Small representations are completely reducible”, J. Algebra, 220:2 (1999), 531–541 | DOI | MR | Zbl
[14] H. E. A. E. Campbell, D. L. Whelau, Modular invariant theory, Encyclopaedia Math. Sci., 139, Springer-Verlag, Berlin, 2011, xiv+233 pp. | DOI | MR | Zbl