Three-dimensional isolated quotient singularities in odd characteristic
Sbornik. Mathematics, Tome 207 (2016) no. 6, pp. 873-887

Voir la notice de l'article provenant de la source Math-Net.Ru

Let a finite group $G$ act linearly on a finite-dimensional vector space $V$ over an algebraically closed field $k$ of characteristic $p>2$. Suppose that the quotient space $V/G$ has an isolated singularity only. The isolated singularities of the form $V/G$ are completely classified in the case when $p$ does not divide the order of $G$, and their classification reduces to Vincent's classification of isolated quotient singularities over $\mathbb C$. In the present paper we show that, if $\dim V=3$, then the classification of isolated quotient singularities reduces to Vincent's classification in the modular case as well (when $p$ divides $|G|$). Some remarks on quotient singularities in other dimensions and in even characteristic are also given. Bibliography: 14 titles.
Keywords: quotient singularity, modular representation, pseudo-reflection
Mots-clés : transvection.
@article{SM_2016_207_6_a5,
     author = {D. A. Stepanov},
     title = {Three-dimensional isolated quotient singularities in odd characteristic},
     journal = {Sbornik. Mathematics},
     pages = {873--887},
     publisher = {mathdoc},
     volume = {207},
     number = {6},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2016_207_6_a5/}
}
TY  - JOUR
AU  - D. A. Stepanov
TI  - Three-dimensional isolated quotient singularities in odd characteristic
JO  - Sbornik. Mathematics
PY  - 2016
SP  - 873
EP  - 887
VL  - 207
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2016_207_6_a5/
LA  - en
ID  - SM_2016_207_6_a5
ER  - 
%0 Journal Article
%A D. A. Stepanov
%T Three-dimensional isolated quotient singularities in odd characteristic
%J Sbornik. Mathematics
%D 2016
%P 873-887
%V 207
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2016_207_6_a5/
%G en
%F SM_2016_207_6_a5
D. A. Stepanov. Three-dimensional isolated quotient singularities in odd characteristic. Sbornik. Mathematics, Tome 207 (2016) no. 6, pp. 873-887. http://geodesic.mathdoc.fr/item/SM_2016_207_6_a5/